Log in

Effect of Al substitution on their structural and magnetic properties of Ba0.5Sr0.5Fe12O19 prepared via sol–gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba0.5Sr0.5AlxFe12-xO19 was synthesized by systematically altering the Al-to-Fe content (x = 0, 1, 2, 3, 4) through the substitution of iron cations with an equivalent amount of aluminum cations. The powder was synthesized using the solgel auto-combustion method, resulting in a well-defined particle size distribution. This work aims to study the synthesis conditions for preparing barium strontium hexaferrite, and then the material properties was characterized by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Vibrating Sample Magnetometer (VSM). The structure of the Al-substituted hexaferrite sample was confirmed using X-ray diffraction with the presence of a hexagonal phase. Using FESEM, the average particle size was found to be 76.35 nm. The magnetic properties of the barium strontium hexaferrite (BSFO) and the Al-substituted BSFO material were studied at room temperature using VSM by knowing the value of coercivity (Hc), saturation magnetization (Ms), retentivity (Mr), squareness ratio (Mr/Ms) for the permanent magnet application. The M-H loop and B-H loop provide insights into the ferromagnetic characteristics of the material. Additionally, the material is assessed to determine its maximum energy storage capacity, denoted as (BH)max. The coercivity of the material was increased from 5206 to 9189 Oe whereas, the saturation value decreased with the increase in the content of Al. The energy product (BH)max for pure BSFO was 13 kJ/m3 and this value were also estimated for different compositions of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request from the authors.

References

  1. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    CAS  Google Scholar 

  2. S. Kanagesan, M. Hashim, S. Jesurani, T. Kalaivani, I. Ismail, M.S.E. Shafie, J. Alloys Compd. 543, 49 (2012)

    CAS  Google Scholar 

  3. P. **g, J. Du, J. Wang, J. Wei, L. Pan, J. Li, Q. Liu, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  4. F.M.M. Pereira, C.A.R. Junior, M.R.P. Santos, R.S.T.M. Sohn, F.N.A. Freire, J.M. Sasaki, J.A.C. Paiva, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 19, 627 (2008)

    CAS  Google Scholar 

  5. P. Sharma, R.A. Rocha, S.N. de Medeiros, A. Paesano, J. Alloys Compd. 443, 37 (2007)

    CAS  Google Scholar 

  6. H. Joshi, A.R. Kumar, J. Mater. Sci. Mater. Electron. 32, 4331 (2021)

    CAS  Google Scholar 

  7. D. Shekhawat, P.K. Roy, Mater. Sci. Eng. B 293, 116461 (2023)

    CAS  Google Scholar 

  8. A. Thakur, R.R. Singh, P.B. Barman, J. Magn. Magn. Mater. 326, 35 (2013)

    ADS  CAS  Google Scholar 

  9. H. Luo, B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, J. Magn. Magn. Mater. 324, 2602 (2012)

    ADS  CAS  Google Scholar 

  10. X. Meng, J. Gao, Y. Lu, J. Sol-Gel Sci. Technol. 64, 86 (2012)

    CAS  Google Scholar 

  11. J. Luo, Mater. Lett. 80, 162 (2012)

    CAS  Google Scholar 

  12. S. Ounnunkad, P. Winotai, J. Magn. Magn. Mater. 301, 292 (2006)

    ADS  CAS  Google Scholar 

  13. C.J. Li, B.N. Huang, J.N. Wang, J. Mater. Sci. 48, 1702 (2013)

    ADS  CAS  Google Scholar 

  14. H.Z. Wang, Y.N. Hai, B. Yao, Y. Xu, L. Shan, L. Xu, J.L. Tang, Q.H. Wang, J. Magn. Magn. Mater. 422, 204 (2017)

    ADS  CAS  Google Scholar 

  15. Z. Yue, W. Guo, J. Zhou, Z. Gui, L. Li, J. Magn. Magn. Mater. 270, 216 (2004)

    ADS  CAS  Google Scholar 

  16. A. Sutka, G. Mezinskis, Front. Mater. Sci. 6, 128 (2012)

    Google Scholar 

  17. S.N. Rout, M.K. Manglam, J. Mallick, S. Datta, M. Kar, Phys. B Condens. Matter 666, 415134 (2023)

    CAS  Google Scholar 

  18. B. Niu, F. Zhang, H. **, N. Li, J. Zhou, L. Lei, J. **e, J. Zhang, W. Wang, Z. Fu, Sci. Rep. 7, 1 (2017)

    ADS  Google Scholar 

  19. M.A. Marjeghal, A. Sedghi, S. Baghshahi, J. Alloys Compd. 968, 171765 (2023)

    CAS  Google Scholar 

  20. A. Nag, R.S.C. Bose, K.S. Venu, H. Singh, Ceram. Int. 48, 15303 (2022)

    CAS  Google Scholar 

  21. E.A. Gorbachev, V.A. Lebedev, E.S. Kozlyakova, L.N. Alyabyeva, A. Ahmed, A. Cervellino, L.A. Trusov, Ceram. Int. 49, 26411 (2023)

    CAS  Google Scholar 

  22. K. Rekha, R.E. Vizhi, Results Phys. 44, 106139 (2023)

    Google Scholar 

  23. Z. Sabouri, M. Sabouri, M.S. Amiri, M. Khatami, M. Darroudi, Mater. Technol. 37, 555 (2022)

    ADS  CAS  Google Scholar 

  24. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, J. Mater. Sci. Mater. Electron. 23, 1127 (2012)

    CAS  Google Scholar 

  25. S.A. Mathews, D.R. Babu, P. Saravanan, Y. Hayakawa, Mater. Chem. Phys. 252, 123063 (2020)

    CAS  Google Scholar 

  26. P.A. Mariño-Castellanos, J.C. Somarriba-Jarque, J. Anglada-Rivera, Phys. B Condens. Matter 362, 95 (2005)

    ADS  Google Scholar 

  27. V.P. Singh, G. Kumar, J. Shah, A. Kumar, M. Dhiman, R.K. Kotnala, M. Singh, Ceram. Int. 41, 11693 (2015)

    CAS  Google Scholar 

  28. A. Hojjati Najafabadi, R. Mozaffarinia, A. Ghasemi, J. Supercond. Nov. Magn. 28, 2821 (2015)

    CAS  Google Scholar 

  29. S.T. Abarna, R. Ezhil Vizhi, V. Harikrishnan, Results Phys. 48, 106419 (2023)

    Google Scholar 

  30. Z. Sabouri, S. Sabouri, S.S.T.H. Moghaddas, A. Mostafapour, S.M. Gheibihayat, M. Darroudi, Biomass Convers. Biorefinery 1 (2022). https://doi.org/10.1007/s13399-022-02907-1

  31. Z. Sabouri, M. Sabouri, S.S.T.H. Moghaddas, A. Mostafapour, S. Samarghandian, M. Darroudi, Biomass Convers. Biorefinery 1 (2023). https://doi.org/10.1007/s13399-023-04984-2

  32. S. Singhal, T. Namgyal, J. Singh, K. Chandra, S. Bansal, Ceram. Int. 37, 1833 (2011)

    CAS  Google Scholar 

  33. F. Khademi, A. Poorbafrani, P. Kameli, H. Salamati, J. Supercond. Nov. Magn. 25, 525 (2012)

    CAS  Google Scholar 

  34. M. Liu, X. Shen, F. Song, J. **ang, X. Meng, J. Solid State Chem. 184, 871 (2011)

    ADS  CAS  Google Scholar 

  35. Z. Sabouri, R.K. Oskuee, S. Sabouri, S.S.T.H. Moghaddas, S. Samarghandian, H.S. Abdulabbas, M. Darroudi, Ceram. Int. 49, 20989 (2023)

    CAS  Google Scholar 

  36. Z. Sabouri, S. Sabouri, S.S.T.H. Moghaddas, A. Mostafapour, M.S. Amiri, M. Darroudi, Bioprocess Biosyst. Eng. 45, 1799 (2022)

    CAS  PubMed  Google Scholar 

  37. K. Habanjar, H. Shehabi, A.M. Abdallah, R. Awad, Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03497-3

    Article  Google Scholar 

  38. S. Torkian, A. Ghasemi, R. ShojaRazavi, M. Tavoosi, J. Supercond. Nov. Magn. 29, 1627 (2016)

    CAS  Google Scholar 

  39. L.A. Trusov, E.A. Gorbachev, V.A. Lebedev, A.E. Sleptsova, I.V. Roslyakov, E.S. Kozlyakova, A.V. Vasiliev, R.E. Dinnebier, M. Jansen, P.E. Kazin, Chem. Commun. 54, 479 (2018)

    CAS  Google Scholar 

  40. M. Shezad, X. Liu, S. Feng, X. Kan, W. Wang, C. Liu, T.J. Shehzad, K.M.U. Rehman, J. Magn. Magn. Mater. 497, 166013 (2020)

    CAS  Google Scholar 

  41. Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, Y. Jiao, J. Magn. Magn. Mater. 294, 281 (2005)

    ADS  CAS  Google Scholar 

  42. S. Singhal, A.N. Garg, K. Chandra, J. Magn. Magn. Mater. 285, 193 (2005)

    ADS  CAS  Google Scholar 

  43. A. Gupta, M. Kar, P.K. Roy, Mater. Chem. Phys. 292, 126842 (2022)

    CAS  Google Scholar 

  44. H.Z. Wang, B. Yao, Y. Xu, Q. He, G.H. Wen, S.W. Long, J. Fan, G.D. Li, L. Shan, B. Liu, L.N. Jiang, L.L. Gao, J. Alloys Compd. 537, 43 (2012)

    CAS  Google Scholar 

  45. J. Dho, E.K. Lee, J.Y. Park, N.H. Hur, J. Magn. Magn. Mater. 285, 164 (2005)

    ADS  CAS  Google Scholar 

  46. P. Behera, S. Ravi, J. Supercond. Nov. Magn. 30, 1453 (2017)

    CAS  Google Scholar 

  47. A.R. Makhdoom, Q.A. Ranjha, U.U.R. Ghori, M.A. Raza, B. Raza, M.E. Mazhar, K.A. Rao, F. Ahmed, S.U. Asif, M.W. Khan, M. Nisa, Phys. Scr. 96(12), 125865 (2021). https://doi.org/10.1088/1402-4896/ac3d4f

  48. H. Irfan, R. Ezhil Vizhi, Nanotechnology 31(40), 404001 (2020)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management, Vellore Institute of Technology, Vellore, Tamilnadu, India for their constant support and the characterization facilities provided for this work. We acknowledge the Nanotechnology Research Centre (NRC), SRMIST for providing the VSM facilities. The authors would like to express their gratitude to all the members of the laboratory as well.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JM: investigation, writing—original draft. REV: supervision, writing—review & editing.

Corresponding author

Correspondence to R. Ezhil Vizhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The authors declare that this manuscript complies with scientific ethical standards. Furthermore, this article does not contain any studies involving human or animal participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoj, J., Vizhi, R.E. Effect of Al substitution on their structural and magnetic properties of Ba0.5Sr0.5Fe12O19 prepared via sol–gel auto-combustion method. J Mater Sci: Mater Electron 35, 370 (2024). https://doi.org/10.1007/s10854-024-12037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12037-1

Navigation