Log in

PEDOT/ZnO@Nickel foam as flexible electrode material for high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel foam (NF) has high porosity, excellent conductivity and good flexibility, making it one of the ideal electrode materials. However, the large number of pores in the NF skeleton cannot be effectively utilized, thus limiting its specific capacitance as a self-supporting electrode material. Herein, a PEDOT/ZnO composite electrode material was prepared on Nickel foam by a two-step electrodeposition method. The electrodeposited ZnO nanoparticles are uniformly and densely coated on the pores of the NF, providing more active sites for electrochemical reactions. Owing to its high conductivity, reversible electrochemical redox behaviour and excellent cyclic stability, the electroactive PEDOT demonstrates an impressive pseudocapacitance property. As expected, the PEDOT/ZnO@NF composite electrode material exhibits a good mass specific capacitance of 139.28 F·g−1 at a current density of 1 A·g−1, and excellent cycling stability with no obvious decay after 100 cycles. In addition, the energy density and power density of the PEDOT/ZnO@NF composite electrode material are 37.9 Wh·Kg−1 and 699.5 W·Kg−1, respectively. This work demonstrates that the as-synthesized PEDOT/ZnO@NF could be a candidate for a flexible electrode material with high-performance supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Q.Q. Zhang, Y. Li, Y.Y. Feng, W. Feng, Electrochim. Acta. 90, 95 (2013)

    Article  CAS  Google Scholar 

  2. M. Hasanzadeh, R. Ansari, M. Farahpour, J. Alloy Compd. 951, 169965 (2023)

    Article  CAS  Google Scholar 

  3. P. Naskar, P. Chakraborty, D. Kundu, A. Maiti, B. Biswas, A. Banerjee, ChemistrySelect. 6, 1127 (2021)

    Article  CAS  Google Scholar 

  4. Y.T. Guo, W.S. Li, H.T. Yu, D.F. Perepichka, H. Meng, Adv. Energy Mater. 7, 1601623 (2017)

    Article  Google Scholar 

  5. H. Li, J. Cao, F. Liu, W.Q. Zhou, X. Chen, Y.B. Deng, Z.X. Wu, B.Y. Lu, D.Z. Mo, J.K. Xu, G. Zhang, ACS Appl. Energ. Mater. 5, 12315 (2022)

    Article  CAS  Google Scholar 

  6. J. Liu, W. Hou, D. Tang, Y. Gao, S. Yao, L. Jiang, Z. Zhang, M. Ouyang, C. Zhang, ACS Sustain. Chem. Eng. 10, 15978 (2022)

    Article  CAS  Google Scholar 

  7. J. Han, G.H. Jang, D.K. Kim, J.Y. Kim, J.W. Shin, C.S. Hwang, Y.Z. Piao, T.D. Kim, Int. J. Energ. Res. 46, 10822 (2022)

    Article  CAS  Google Scholar 

  8. R. Wang, J.W. Li, L. Gao, J.S. Yu, Chem. Eng. J. 445, 136731 (2022)

    Article  CAS  Google Scholar 

  9. A. Schmidt, M.K. Ramos, C.S. Pinto, A.F. Pereira, V.H.R. Souza, A.J.G. Zarbin, Electrochem. Commun. 134, 107183 (2022)

    Article  CAS  Google Scholar 

  10. Y. Kim, K. Shin, Appl. Surf. Sci. 547, 149141 (2021)

    Article  CAS  Google Scholar 

  11. N.A. Salleh, S. Kheawhom, A.A. Mohamad, Arab. J. Chem. 13, 6838 (2020)

    Article  CAS  Google Scholar 

  12. H.C. Peng, B. Yan, M.J. Jiang, B.C. Liu, Y.C. Gu, G. Yao, Y. Zhang, L.L. Ye, X. Bai, S. Chen, J. Mater. Chem. A 9, 1669 (2021)

    Article  CAS  Google Scholar 

  13. Y.Y. Fu, J.Q. Pan, G.S. **ao, J.J. Niu, W.D. Fu, J.J. Wang, Y.Y. Zheng, C.R. Li, J. Mater. Sci: Mater. Electron. 32, 16126–16138 (2021)

    CAS  Google Scholar 

  14. Y. **a, S.Y. Dai, J. Mate Sci-Mater El. 32, 12746 (2021)

    Article  CAS  Google Scholar 

  15. P. Prabakaran, S. Prabhu, M. Selvaraj, M. Navaneethan, P. Ramu, R. Ramesh, J. Mater. Sci: Mater. Electron. 33, 9256–9268 (2022)

    CAS  Google Scholar 

  16. G.F. Liu, Y.H. Qin, Y.Z. Lyu, M.Y. Chen, P.C. Qi, Y. Lu, Z.W. Sheng, Y.W. Tang, Chem. Eng. J. 426, 131248 (2021)

    Article  CAS  Google Scholar 

  17. C.H. Ruan, P.X. Li, J. Xu, Y.B. **e, Prog Org. Coat. 139, 105455 (2020)

    Article  CAS  Google Scholar 

  18. Q. Tu, X.R. Li, Z.Y. **ong, H.X. Wang, J. Fu, L.Z. Chen, J. of Energy Storage. 53, 105211 (2022)

    Article  Google Scholar 

  19. X.L. Wei, N. Li, J.F. An, C.F. Huo, H. Liu, R.C. Yang, X.Y. Li, Z.S. Chao, Crystengcomm. 22, 25 (2020)

    Google Scholar 

  20. S.W. Li, M. Wang, Y.F. Lian, Sci. China Chem. 56, 405 (2016)

    Article  Google Scholar 

  21. Y.A. Kumar, A.E. Reddy, J.S. Bak, I.H. Cho, H.J. Kim, RSC Adv. 9, 21225 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Q. Liu, Y.D. Chen, J. Ma, X.B. **ong, X.R. Zeng, H.X. Qian, Surf. Coat. Tech. 421, 127452 (2021)

    Article  CAS  Google Scholar 

  23. Y.L. Shih, C.L. Wu, T.Y. Wu, D.H. Chen, Nanotechnology. 30, 115601 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Y. Du, K.F. Cai, S.Z. Shen, W.D. Yang, J.Y. Xu, T. Lin, J. Mater. Sci: Mater. Electron. 27, 10289–10293 (2016)

    CAS  Google Scholar 

  25. U. Evariste, G.H. Jiang, B. Yu, Y.K. Liu, P.P. Ma, J. Electron. Mater. 49, 922 (2020)

    Article  ADS  CAS  Google Scholar 

  26. M. Shobeiri, K. Tahmasebi, S.M.A. Hosseini, J. Electron. Mater. 52, 6416 (2023)

    Article  ADS  CAS  Google Scholar 

  27. Y.L. Ding, M.Y. Wang, Z.Y. Mei, X.G. Diao, ACS Appl. Mater. Inter. 15, 15646 (2023)

    Article  CAS  Google Scholar 

  28. A.M. Mansour, A.M. Fathi, A.B.A. Hammad, A.M.E. Nahrawy, Phys. Scr. 98, 055922 (2023)

    Article  ADS  Google Scholar 

  29. S. Dutt, S. Verma, A. Singh, P. Mahajan, B. Padha, A. Ahmed, S. Young, V. Gupta, D.N. Agha, S. Arya, J. Electron. Mater. 52, 7447–7458 (2023)

  30. S.Y. Kim, Y.J. Jang, Y.M. Kim, J.K. Lee, H.C. Moon, Adv. Funct. Mater. 32, 2200757 (2022)

    Article  CAS  Google Scholar 

  31. X.Q. Mao, Z.H. Wang, W.K. Kong, W.Z. Wang, New. J. Chem. 41, 1142 (2017)

    Article  CAS  Google Scholar 

  32. J. Balaji, K. Aruchamy, T.H. Oh, Ionics. 28, 4867 (2022)

    Article  CAS  Google Scholar 

  33. J. Wang, D. Zhang, Mater. Chem. Phys. 277, 125488 (2022)

    Article  CAS  Google Scholar 

  34. S.S. Shah, H.T. Das, H.R. Barai, M.A. Aziz, Polymers-Basel. 14, 270 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. C. Saravanan, B.C.M.A. Ashwin, S. Manoj, M. Senthilkumaran, V. Sethuraman, P.B. Bhargav, P. Ramasamy, P.M. Mareeswaran, Mater. Lett. 320, 132348 (2022)

    Article  CAS  Google Scholar 

  36. Y.Y. Fan, H.M. Chen, Y.K. Li, D.F. Cui, Z. Fan, C.Y. Xue, Ceram. Int. 47, 8433 (2021)

    Article  CAS  Google Scholar 

  37. W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, N.M. Huang, Electrochim. Acta. 157, 88 (2015)

    Article  CAS  Google Scholar 

  38. D. Momodu, A. Bello, J. Dangbegnon, F. Barzeger, M. Fabiane, N. Manyala, J. Solid State Electr. 19, 445 (2015)

    Article  CAS  Google Scholar 

  39. A. Aamir, A. Ahmad, S.K. Shah, N.U. Ain, M. Mehmood, Y. Khan, Z.U. Rehman, J. Mater. Sci-Mater El. 31, 21035 (2020)

    Article  CAS  Google Scholar 

  40. Y.H. Ding, N. Zhang, J.Y. Zhang, X.R. Wang, J.Q. **, X.F. Zheng, Y.Z. Fang, Ceram. Int. 43, 5374 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of this research from Natural Science Foundation of Zhejiang Province (No. LY21E030010), Zhejiang **nmiao Talents Program (No. G22211010103), Key Research and Development Program of Zhejiang Province (No. 2021C01080) and Key R&D Project of Jiangsu Province (No. BE2022104).

Author information

Authors and Affiliations

Authors

Contributions

MS: study conceptualization, formal analysis and writing (original draft) the manuscript; ZG: data curation, formal analysis; JD: writing (review and editing) the manuscript; RG: study conceptualization; YG: analysis; XL: writing (original draft) the manuscript; CZ: writing (review and editing) and project administration.

Corresponding authors

Correspondence to **ao**g Lv or Cheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Indicate that our research manuscript has been conducted ethically, kee** in mind privacy, consent and appropriate reporting of those involved in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2900.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, M., Ge, Z., Dong, J. et al. PEDOT/ZnO@Nickel foam as flexible electrode material for high-performance supercapacitor. J Mater Sci: Mater Electron 35, 180 (2024). https://doi.org/10.1007/s10854-024-11951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11951-8

Navigation