Log in

Bulk synthesis of chemically activated carbon and cobalt oxide nanocomposites as supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple and inexpensive method was presented to prepare a bulk product of chemically activated carbon (AC) and cobalt oxide (Co3O4) nanocomposites (AC/Co3O4) with different weight ratios by a solid-state reaction, which can be used as electrode materials for supercapacitor applications. The microstructure, porosity, and surface chemical properties of the prepared samples were studied in the context of their different electrochemical properties. The results showed that the electrode prepared by mixing the micrometer-sized porous structure AC with 30 wt% Co3O4 nanoparticles has a maximum specific capacitance of 435.72 F/g at a current density of 1 A/g in 6 M KOH electrolyte and excellent capacitance retention of 97.3% after 5000 galvanostatic charge/discharge cycles. In addition, the AC/Co3O4 30 wt% asymmetric supercapacitor can deliver an energy density of 4.71 Wh/kg and a power density of 487.06 W/kg at a current density of 1 A/g. Therefore, the AC/Co3O4 30 wt% nanocomposite materials represent a promising pseudocapacitive material for the next generation of electrochemical and energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that all relevant data are included in the article and/or its supplementary information files.

References

  1. D.P. Dubal, N.R. Chodankar, D.H. Kim, P.G. Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Z. Niu, L. Liu, L. Zhang, W. Zhou, X. Chen, S. **e, Programmable nanocarbon-based architectures for flexible supercapacitors. Adv. Energy Mater. 5, 1500677 (2015)

    Article  Google Scholar 

  3. L.H. Li, L. Jiachen, L. Huan, Z. **aoyu, T. Ying, H. Zheng-Hong, Y. Quan-Hong, Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. J. Energy Chem. 31, 95–100 (2019)

    Article  Google Scholar 

  4. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. Sust. Chem. Eng. 1, 1110–1118 (2013)

    Article  CAS  Google Scholar 

  5. B. Qiu, C. Pan, W.J. Qian, Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J. Mater. Chem. 1, 6373–6378 (2013)

    Article  CAS  Google Scholar 

  6. L.H. Bao, J.F. Zang, X.D. Li, Flexible Zn2SnO4/MnO2 core/shell nanocable−carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 11, 1215–1220 (2011)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. K.B. Kihun, S. Serubbable, Y. Ai**, Z.J. Zhang, Electrochemical supercapacitors for energy storage and conversion. J. Electrochem. Energy Convers. Storage. 84, 1–25 (2015)

    Google Scholar 

  8. I. Tanahashi, A. Yoshida, A. Nishino, Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors. J. Electrochem. Soc. 137, 3052–3057 (1990)

    Article  CAS  ADS  Google Scholar 

  9. L. Wen, H. Rachel, Nanocomposite electrodes for high-performance supercapacitors. J. Phys. Chem. Lett. 2, 655–660 (2011)

    Article  Google Scholar 

  10. S.L. Kwang, W.P. Chan, K. Jong-Duk, Synthesis of ZnO/activated carbon with high surface area for supercapacitor electrodes. Colloids Surf. A 555, 482–490 (2018)

    Article  Google Scholar 

  11. H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24, 4197–4202 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. P. Milić, D. Marinković, S. Klinge, Z. Ćojbašić, Reissner-mindlin based isogeometric finite element formulation for piezoelectric active laminated shells. Techn. Gazette. 30(2), 416–425 (2023)

    Google Scholar 

  13. K. Hoe**, A.I.S. Mohammad, K. Hasanul, I.N. Manjula, M.S. Ashleigh, V. Murugesan, C.N. Juan, T. Tzu-liang, L. Yirong, Porous carbon/CeO2 nanoparticles hybrid material for high-capacity super-capacitors. MRS Adv. 2, 2471–2480 (2017)

    Article  Google Scholar 

  14. G. Sun, L. Ma, J. Ran, X. Shen, H. Tong, Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors. J. Mater. Chem. A 4, 9542–9554 (2016)

    Article  CAS  Google Scholar 

  15. N. Kenyota, W. Jarernboon, P. Laokul, Effect of surface modification by KOH activation on the electrochemical performance of Co3O4 nanoparticles. Mater. Sci. Eng. B 290, 116293 (2023)

    Article  CAS  Google Scholar 

  16. M. Kumar, A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim. Acta 149, 152–158 (2014)

    Article  CAS  Google Scholar 

  17. X. Yan, Y. Wang, Z. Ma, Synthesis, characterization and electrochemical performance of cobalt oxides for supercapacitor. Int. J. Electrochem. Sci. 13(1), 1074–1083 (2018)

    Article  CAS  Google Scholar 

  18. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. A. Sara, A.G. Mohammad, Z. Biao, X. Zheng-Long, K.H. Elham, H. Jian-qiu, H. Jiaqiang, K. Jang-Kyo, Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 13503–13511 (2015)

    Article  Google Scholar 

  20. Z. Changming, X. Li**g, S. Wen, W. Jianlong, S. Guohua, L. Kaixi, Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials. J. Electroanal. Chem. 706, 1–6 (2013)

    Article  Google Scholar 

  21. A.T.E. Vilian, B. Dinesh, M. Rethinasabapathy, S.K. Hwang, C.S. **, Y.S. Huh, Y.K. Han, Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A. 6, 14367–14379 (2018)

    Article  CAS  Google Scholar 

  22. S.J. Park, W.Y. Jung, Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. J. Colloid Interface Sci. 250, 93–98 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. S. Yaglikci, Y. Gokce, E. Yagmur, Z. Aktas, The performance of sulphur doped activated carbon supercapacitors prepared from waste tea. Environ. Technol. 41(1), 36–48 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. C. Sengottaiyan, R. Jayavel, R.G. Shrestha, T. Subramani, S. Maji, J.H. Kim, J.P. Hill, K. Ariga, Indium oxide/carbon nanotube/reduced graphene oxide ternary nanocomposite with enhanced electrochemical supercapacitance. Bull. Chem. Soc. Jpn 92, 521–528 (2019)

    Article  CAS  Google Scholar 

  25. Y. Shao-Horn, R.L. Middaugh, Redox reactions of cobalt, aluminum and titanium substituted lithium manganese spinel compounds in lithium cells. Solid State Ion. 139, 13–25 (2001)

    Article  CAS  Google Scholar 

  26. A. Kingo, Y. Hiroya, Y. Yusuke, Relationship between changes in ionic radius and lattice dimension of lithium manganese oxide spinels during lithium insertion/extraction. Solid State Ionics 343, 115077 (2019)

    Article  Google Scholar 

  27. W. Tang, W. **ao, S. Wang, Z. Ren, J. Ding, P.X. Gao, Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: a comparative study with Pt and Pd based catalysts. Appl. Catal. B 226, 585–595 (2018)

    Article  CAS  Google Scholar 

  28. J.H. Kim, S.Y. Hwang, J.E. Park, G.B. Lee, H. Kim, S. Kim, B.U. Hong, Impact of the oxygen functional group of nitric acid-treated activated carbon on KOH activation reaction. Carbon Lett. 29, 281–287 (2019)

    Article  Google Scholar 

  29. W. Zhong, W. Wenzhong, Z. Ling, J. Dong, Surface oxygen vacancies over Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal. Sci. Technol. 1–11 (2013)

  30. J. Jiang, L. Li, Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 6(27), 4894–4896 (2007)

    Article  Google Scholar 

  31. G. Bhattacharya, S. Sas, S. Wadhwa, A. Mathur, J. McLaughlin, S.S. Roy, Aloe vera assiste facile green synthesis of reduced graphene oxide for electrochemical and dye removal application. R. Soc. Chem. 7, 26680–26688 (2017)

    CAS  Google Scholar 

  32. M.S. Dresselhaus, A. Jorio, A.G. SouzaFilho, R. Saito, Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A 368(1932), 5355–5377 (2010)

    Article  CAS  ADS  Google Scholar 

  33. W. Weixin, W. Shufen, Z. Siwei, W. Wei, J. **ang, L. Chun**g, Effects of substrates on proton irradiation damage of graphene. RSC Adv. 10, 12060–12067 (2020)

    Article  ADS  Google Scholar 

  34. S. Garcia-Segura, E.V. dos Santos, C.A. Martínez-Huitle, Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochem. Commun. 59, 52–55 (2015)

    Article  CAS  Google Scholar 

  35. O.A. Fouad, S.A. Makhlouf, G.A. Ali, A.Y. El-Sayed, Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Mater. Chem. Phys. 128, 70–76 (2011)

    Article  CAS  Google Scholar 

  36. O. Oluwatosin, S. Kaushlendra, O. Gloria, D.A. Benjamin, L. McDonald, S. Edward, Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour. Technol. Rep. 7, 100266 (2019)

    Article  Google Scholar 

  37. G. Saunab, R.B. Andrew, The effect of KOH concentration on chemical activation of porous carbon sorbents for carbon dioxide uptake and carbon dioxide–methane selectivity: the relative formation of micro- (<2 nm) versus meso- (>2 nm) porosity. Sustain. Energy Fuels 1(4), 806–813 (2017)

    Article  Google Scholar 

  38. D. Zou, C. Xu, H. Luo, L. Wang, T. Ying, Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Mater. Lett. 62, 1976–1978 (2008)

    Article  CAS  Google Scholar 

  39. X. Zhang, J. **ao, X. Zhang, Y. Meng, D. **ao, Three-dimensional Co3O4 nanowires@amorphous Ni(OH)2 ultrathin nanosheets hierarchical structure for electrochemical energy storage. Electrochim. Acta 191(2016), 758–766 (2016)

    Article  CAS  Google Scholar 

  40. L. Xu, Q. Jiang, Z. **ao, X. Li, J. Huo, S. Wang, L. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55, 5277–5281 (2016)

    Article  CAS  Google Scholar 

  41. C. Zhao, B. Huang, W. Fu, J. Chen, J. Zhou, E. **e, Fabrication of porous nanosheet based Co3O4 hollow nanocubes for electrochemical capacitors with high rate capability. Electrochim. Acta 178, 555–563 (2015)

    Article  CAS  Google Scholar 

  42. Z. Wang, W. Wang, L. Zhang, D. Jiang, Surface oxygen vacancies on Co3O4 mediated catalytic formal dehyde oxidation at room temperature. Catal. Sci. Technol. 6, 3845–3853 (2016)

    Article  CAS  Google Scholar 

  43. H. Huang, W. Zhu, X. Tao, Y. **a, Z. Yu, J. Fang, Y. Gan, W. Zhang, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium ion batteries. ACS Appl. Mater. Interfaces 4, 5974–5980 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium-ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. Z.Q. Liu, K. **ao, Q.Z. Xu, N. Li, Y.Z. Su, H.J. Wang, S. Chen, Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3(13), 4372–4380 (2013)

    Article  CAS  ADS  Google Scholar 

  46. Z.Q. Liu, Q.Z. Xu, J.Y. Wang, N. Li, S.H. Guo, Y.Z. Su, H.J. Wang, J.H. Zhang, S. Chen, Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrog. Energy 38(16), 6657–6662 (2013)

    Article  CAS  Google Scholar 

  47. J. Dìaz, G. Paolicelli, S. Ferrer, F. Comin, Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54(11), 8064–8069 (1996)

    Article  ADS  Google Scholar 

  48. Z.B. Wen, Q.T. Qu, Q. Gao, Z.H. Hu, Y.P. Wu, X.W. Zheng, Y.F. Liu, X.J. Wang, An activated carbon with high capacitance from carbonization of a resorcinol–formaldehyde resin. Electrochem. Commun. 11, 715–718 (2009)

    Article  CAS  Google Scholar 

  49. Q.T. Qu, B. Wang, L.C. Yang, Y. Shi, S. Tian, Y.P. Wu, Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem. Commun. 10, 1652–1655 (2008)

    Article  CAS  Google Scholar 

  50. C. Barbero, G.A. Planes, M.C. Miras, Redox coupled ion exchange in cobalt oxide films. Electrochem. Commun. 3, 113–116 (2001)

    Article  CAS  Google Scholar 

  51. F. Zhang, C. Yuan, J. Zhu, J. Wang, X. Zhang, X.W. Lou, Flexible films derived from electro spun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported. Adv. Funct. Mater. 23, 3909–3915 (2013)

    Article  CAS  Google Scholar 

  52. Z.K. Ghouri, N.A.M. Barakat, H.Y. Kim, Synthesis and electrochemical properties of MnO2 and co-decorated graphene as novel nanocomposite for electrochemical super capacitors application. Energy Environ. Focus 4, 34–39 (2015)

    Article  Google Scholar 

  53. I.I. Misnon, R. Abd Aziz, N.K.M. Zain, B. Vidhyadharan, S.G. Krishnan, R. Jose, High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes. Mater. Res. Bull. 57, 221–230 (2014)

    Article  CAS  Google Scholar 

  54. Y. Miao, H. Yingying, L. Yao, L. Jian, W.L. Wang, Improving electrochemical activity of activated carbon derived from popcorn by NiCo2S4 nanoparticle coating. Appl. Surf. Sci. 463, 1001–1010 (2019)

    Article  Google Scholar 

  55. Y. Wang, Y. Lei, J. Li, L. Gu, H. Yuan, D. **ao, Synthesis of 3D-nanonet hollow structured Co3O4 for high-capacity supercapacitor. ACS Appl. Mater. Interfaces 6, 6739–6747 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. D. Dongyang, C. Nan, X. Xuechun, D. Shangfeng, W. Yude, Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 23, 121–129 (2017)

    Article  Google Scholar 

  57. J.T. Zhang, J.W. Jiang, X.S. Zhao, Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)

    Article  CAS  Google Scholar 

  58. S.K. Meher, P. Justin, G. Ranga Rao, Microwave-mediated synthesis for improved morphology and pseudo capacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063–2073 (2011)

    Article  CAS  PubMed  Google Scholar 

  59. J.B. Cook, H.-S. Kim, T.C. Lin, C.-H. Lai, B. Dunn, S.H. Tolbert, Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv. Energy Mater. 7, 1–25 (2017)

    Article  Google Scholar 

  60. Z.T. Zheng, H.T. Mohammad, L. Bei, L. Ying, R. Sijia, S.G. Tom, L. Kwok-Ho, C. InSuk, T.B. Steven, Sputtered titanium nitride films on titanium foam substrates as electrodes for high-power electrochemical capacitors. Chem. Electro. Chem. 5, 2199–2207 (2018)

    CAS  Google Scholar 

  61. L. Shi, D. Li, P. Yao, J. Yu, C. Li, B. Yang, C. Zhu, J. Xu, SnS2 nanosheets coating on nano hollow cubic CoS2/C for ultralong life and high-rate capability half/full sodium-ion batteries. Small 14(41), 1802716 (2018)

    Article  Google Scholar 

  62. L. Shijie, H. Kuihua, S. Pengchao, L. **xiao, L. Chunmei, High–performance activated carbons prepared by KOH activation of gulfweed for supercapacitors. Int. J. Electrochem. Sci. 13, 1728–1743 (2018)

    Article  Google Scholar 

  63. L. Tianli, L. Zaichun, Z. Li, D. Fang, H. Lu, Z. Lei, W. Zubiao, W. Yu**, Cr2O3 nanoparticles: a fascinating electrode material combining both surface-controlled and diffusion-limited redox reactions for aqueous supercapacitors. J. Mater. Sci. 53, 16458–16465 (2018)

    Article  Google Scholar 

  64. Y. Johnbosco, K. **sun, Y. Rui, K. Kibum, Dual functionality of dichalcogenide-supported pentagon core–hexagon ring-structured NiCo2O4 nanoplates: an effective hybridization for tuning of a diffused- to a surface-controlled process and boosting of CO2 electrocatalysis. ACS Appl. Energy Mater. 5(8), 10149–10164 (2022)

    Article  Google Scholar 

  65. S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115, 15646–15654 (2011)

    Article  CAS  Google Scholar 

  66. Y.L. Zhou, Z.B. Hu, C.H. Zhao, K.Y. Liu, D.G. Lin, Synthesis and electrochemical performances of Co3O4/graphene as supercapacitor material. Int. J. Electrochem. Sci. 11, 6078–6084 (2016)

    Article  CAS  Google Scholar 

  67. L.Y. Li, W. Huijie, W. Yi, L. Qing, Facile synthesis of mesoporous Co3O4 nanowires for application in supercapacitors. J. Mater. Sci. 28, 16826–16835 (2017)

    CAS  Google Scholar 

  68. V. Chaudhary, P. Lakhera, V. Shrivastav, P. Kumar, A. Deep, Nanoporous carbon/cobalt composite derived from end-of-life lithium cobalt oxide-type lithium-ion batteries for supercapacitor applications. Ind. Eng. Chem. Res. 61(50), 18492–18502 (2022)

    Article  CAS  Google Scholar 

  69. Y. Caiqin, L. Weiwei, L. **aowei, S. **umei, L. Hongpeng, T. Lichao, Preparation of MoFs-derived cobalt oxide/carbon nanotubes composites for high-performance asymmetric supercapacitor. Molecules 28(7), 3177 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Physics, Faculty of Science, Khon Kaen University for the use of their electrochemical workstation. This research project is supported by National Research Council of Thailand (NRCT): (Contact No. N41A640217). The authors declare that they have no conflicts of interest.

Funding

Funding was provided by Royal Golden Jubilee (RGJ) Ph.D. Programme, National Research Council of Thailand (NRCT): (Contact No. N41A640217).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NK, WJ and PL. The first draft of the manuscript was written by NK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paveena Laokul.

Ethics declarations

Conflict of interest

The authors declare that there is no affiliation with any institute/organization with indirect or direct financial interest with this paper.

Research involving human and animal rights

This work does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1364 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenyota, N., Jarernboon, W. & Laokul, P. Bulk synthesis of chemically activated carbon and cobalt oxide nanocomposites as supercapacitor electrodes. J Mater Sci: Mater Electron 35, 158 (2024). https://doi.org/10.1007/s10854-023-11886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11886-6

Navigation