Log in

High-sensitivity porous PDMS sensor based on laser-etched pyramidal structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a flexible resistive pressure sensor of polydimethylsiloxane (PDMS) with porous pyramidal array structure is proposed to be prepared rapidly by laser etching. The porous doped PDMS was prepared by laser etching technique and continuous heat treatment to overcome the viscosity requirement of porous silica by traditional template method, reduce the preparation cost, and improve the practicality. Using the carbon-based filler material with high light absorption coefficient and low interfacial thermal resistance, the light absorption coefficient of MWCNTs has a significant role in laser etching, which has a significant effect on the depth of cut of the laser. In addition, the strain response of the porous PDMS sponge media layer under different external forces was simulated using finite element analysis (FEA). Its sensitivity is as high as 645 kPa−1, with fast response of 26 ms and 32 ms, good hysteresis (0.78%), and strong stability in 5000 cycles. The ultra-high sensitivity is the key to make the flexible pressure sensor widely use in medical detection, which can be widely applied to heartbeat detection, gesture recognition, and real-time detection in healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. W. Zhang, J. Ma, F. Meng, Y. Jiang, L. Shen, T. Sun, Y. Qin, N. Zhu, M. Zhang, J. Alloys Compd. 891, 161983 (2022)

    Article  CAS  Google Scholar 

  2. Y. He, Y. Ming, W. Li, Y. Li, M. Wu, J. Song, X. Li, H. Liu, Sensors. 18(5), 1338 (2018)

    Article  Google Scholar 

  3. X. Hu, M. Tian, T. Xu, X. Sun, B. Sun, C. Sun, X. Liu, X. Zhang, L. Qu, Acs Nanp. 14(1), 559–567 (2019)

    Article  Google Scholar 

  4. Y. Peng, N. Yang, Q. Xu, Y. Dai, Z. Wang, Sensors. 21(16), 5392 (2021)

    Article  CAS  Google Scholar 

  5. W. Li, X. **, X. Han, Y.R. Li, W.Y. Wang, T. Lin, Z.T. Zhu, ACS Appl. Mater. Interfaces. 13(16), 19211–19220 (2021)

    Article  CAS  Google Scholar 

  6. M. Liu, C. Hang, X. Zhao, L. Zhu, R. Ma, J. Wang, H. Lu, D. Zhang, Nano Energy 87, 106181 (2021)

    Article  CAS  Google Scholar 

  7. A. Rinaldi, A. Tamburrano, M. Fortunato, M. Sarto, Sensors. 16(12), 2148 (2016)

    Article  Google Scholar 

  8. Y. Su, W. Zhang, S. Chen, D. Yao, X. Zhang, H. Chen, H. Xu, IEEE Trans. Electron Devices. 68(2), 786–792 (2021)

    Article  CAS  Google Scholar 

  9. Q. Li, R. Bai, Y. Gao, R. Wu, K. Ju, J. Tan, F. Xuan, A.C.S. Appl, Mater. Interfaces. 13(8), 10171–10180 (2021)

    Article  CAS  Google Scholar 

  10. K. Meng, X. **ao, W. Wei, G. Chen, A. Nashalian, S. Shen, X. **ao, J. Chen, Adv. Mater. 2109357(2022).

  11. G. Zhu, H. Dai, Y. Yao, J. Shi, J. Yang, L. Zhu, Adv. Mater. Technol.-US 7(7), 2101239 (2022)

    Article  CAS  Google Scholar 

  12. Y. Tan, X. Liu, W. Tang, J. Chen, Z. Zhu, L. Li, N. Zhou, X. Kang, D. Xu, L. Wang, G. Wang, H. Tan, H. Li, Adv. Mater. Interfaces 9(5), 2101312 (2022)

    Article  Google Scholar 

  13. C. Yang, L. Wang, S. Tseng, Ceram. Int. 48(9), 13144–13153 (2022)

    Article  CAS  Google Scholar 

  14. C. Zhang, R. Chen, C. **ao, H. Zhao, Y. Wang, D. Geng, S. Chen, T. Luo, W. Zhou, Adv. Mater. Interfaces. 9(1), 2101596 (2022)

    Article  CAS  Google Scholar 

  15. T. Li, Z. Yang, J. Wei, X. Yang, J. Liu, J. Zhou, X. Zhang, G. Liu, Adv. Mater. Technol. 7(6), 2101135 (2022)

    Article  CAS  Google Scholar 

  16. J. Zhu, X. Xue, J. Li, J. Wang, H. Wang, Y. **ng, P. Zhu, Microelectron. Eng. 257, 111750 (2022)

    Article  CAS  Google Scholar 

  17. J. Li, Y. Zheng, D. Luo, Y. Jiang, Q. Xu, J. Yang, Y. Sun, C. Pan, J. Wang, Z. Peng, Z. Zheng, W. Liu, Adv. Sci. 9(23), 2201912 (2022)

    Article  CAS  Google Scholar 

  18. C. Mu, X. Guo, T. Zhu, S. Lou, W. Tian, Z. Liu, W. Jiao, B. Wu, Y. Yin, X. Jian, Y. Song, J. Alloys Compd. 165696 (2022).

  19. L. Lo, J. Zhao, H. Wan, Y. Wang, S. Chakrabartty, C. Wang, A.C.S. Appl, Mater. Interfaces. 14(7), 9570–9578 (2022)

    Article  CAS  Google Scholar 

  20. X. Tan, J. Zheng, Polymers 14(8), 1495 (2022)

    Article  CAS  Google Scholar 

  21. M. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang, J. Jiang, J. Cai, Q. Wang, G. Luo, M. **ng, Adv. Mater. 29(31), 1700533 (2019)

    Article  Google Scholar 

  22. J. Jeong, J. Xu, H. Jo, J. Li, X. Kong, W. Collins, C. Bennett, S. Laflamme, Smart Mater. Struct. 28(1), 015002 (2019)

    Article  CAS  Google Scholar 

  23. X. Chang, S. Sun, S. Sun, T. Liu, X. **ong, Y. Lei, L. Dong, Y. Yin, J. Alloys Compd. 738, 111–117 (2018)

    Article  CAS  Google Scholar 

  24. T. **ao, C. Qian, R. Yin, K. Wang, Y. Gao, F. Xuan, Adv. Mater. Technol. 6(1), 2000745 (2021)

    Article  CAS  Google Scholar 

  25. J. Seo, T. Lee, C. Lim, C. Rui, D. Ann, S. Lee, H. Lee, Small 11(25), 2990–2994 (2015)

    Article  CAS  Google Scholar 

  26. M. Liu, H. Zheng, J. Chen, S. Li, J. Huang, C. Zhou, Carbohydr. Polym. 152, 832–840 (2016)

    Article  CAS  Google Scholar 

  27. N. Wei, C. Zhu, S. Lu, C. Liu, Y. Li, L. Wang, J. Alloys Compd. 869, 159379 (2021)

    Article  CAS  Google Scholar 

  28. W. Li, X. Han, Y. Li, W. Wang, T. Lin, Z. Zhu, A.C.S. Appl, Mater. Interfaces. 13(16), 19211–19220 (2021)

    Article  CAS  Google Scholar 

  29. D. Zhu, S. Wang, X. Zhou, J. Mater. Chem. A 5(32), 16467–16497 (2017)

    Article  CAS  Google Scholar 

  30. D. Ryoo, J. Kim, P. Duy, S. Cho, H. Chung, T. Yoon, Analyst. 143(18), 4347–4353 (2018)

    Article  CAS  Google Scholar 

  31. A. Nag, S. Mukhopadhyay, J. Kosel, Sensor Actuators A 251, 148–155 (2016)

    Article  CAS  Google Scholar 

  32. Z. Hosseindokht, R. Mohammadpour, E. Asadian, M. Paryavi, H. Tabar, P. Sasanpour, Superlattices Microstruct. 140, 106470 (2020)

    Article  CAS  Google Scholar 

  33. Y. Tai, Z. Yang, J. Mater. Chem. B 3(27), 5436–5441 (2015)

    Article  CAS  Google Scholar 

  34. Y. Jung, T. Oh, B. Park, J. Ko, H. Kim, J. Yun, H. Cho, A.C.S. Appl, Mater. Interfaces 13(24), 28975–28984 (2021)

    Article  CAS  Google Scholar 

  35. H.A.K. Toprakci, S.K. Kalanadhabhatla, R.J. Spontak, T.K. Ghosh, Adv. Funct. Mater. 23(44), 5536–5542 (2013)

    Article  CAS  Google Scholar 

  36. M.S..Cetin, H. A. K.Toprakci, Composites Part B 224, 109199 (2021)

  37. A. Turgut, M.O. Tuhin, O. Toprakci, M.A. Pasquinelli, R.J. Spontak, H.A.K. Toprakci, ACS Omega 3(10), 12648–12657 (2018)

    Article  CAS  Google Scholar 

  38. N.Y. Yuan, C.Y. Wang, J.Y. Ji, K. Zhou, J. Mater. Sci. 32, 27656–27665 (2021)

    CAS  Google Scholar 

  39. J.M. Jia, Y. Yang, B. Cai, W. Lu, Mater. Sci. 33(4), 2003–2011 (2022)

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Tian** Innovation and Entrepreneurship Development Plan, Tian** Natural Science Foundation (Grant Nos. 18JCZDJC99800, 17JCQNJC0900), the National Natural Science Foundation of China (Grant No. 51502203), Tian** Overseas Young High-Level Talent Program (Grant No. 01001502), Tian** Science and Technology Foundation (Grant No. 17ZXZNGX00090), Shenzhen Science and Technology Program (Grant No. ZDSYS20190902093220279), and Tian** Young Researchers Specially Appointed Professorship Fund.

Funding

Funding was provided by Tian** Innovation and Entrepreneurship Development Plan (Grant No. 18JCZDJC99800), Tian** Natural Science Foundation (Grant No. 17JCQNJC0900), National Natural Science Foundation of China (Grant No. 51502203), Tian** Overseas Young High-Level Talent Program (Grant No. 01001502), Tian** Science and Technology Foundation (Grant No. 17ZXZNGX00090), Shenzhen Science and Technology Program (Grant No. ZDSYS20190902093220279) and Tian** Young Researchers Specially Appointed Professorship Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the study conception and design. XZ contributed to data curation and writing of the original draft. PP contributed to conceptualization, supervision, methodology, and writing, reviewing, and editing of the manuscript. ZY contributed to editing of the manuscript and funding acquisition. JL contributed to editing, investigation, and data curation. JW contributed to supervision and funding acquisition. GL contributed to data curation. PL contributed to data curation. HS contributed to supervision. PZ contributed to supervision and investigation.

Corresponding authors

Correspondence to Peng Pan or Jun Wei.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1737 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Pan, P., Wei, J. et al. High-sensitivity porous PDMS sensor based on laser-etched pyramidal structure. J Mater Sci: Mater Electron 34, 1178 (2023). https://doi.org/10.1007/s10854-023-10535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10535-2

Navigation