Log in

Effect of Ga do** on optical transmittance and electrical conductivity of CdS thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga doped CdS thin films were deposited on Soda Lime Glass substrates by Chemical Bath Deposition (CBD) method while concentrations of Gallium was varied during do**. X-ray Diffraction (XRD), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscope (AFM), UV/VIS/NIR Lambda 9/19 double beam Spectrophotometer and Hall Effect Measurements system were used to analyse structural, surface morphology, optical and electrical properties of the films. XRD analysis revealed that deposited Ga doped CdS thin films had polycrystalline hexagonal phase, with preferred orientation along the (002) planes. An increase in Raman spectral intensity was observed for the doped films as compared to undoped CdS films. AFM and SEM analysis showed that grains were uniformly distributed on the substrate and were spherical in shape. The grain size and roughness increased with an increase in do** concentration as featured in the AFM and SEM images. Ga do** showed a strong effect to increase the transmittance of the films, with a maximum average transmittance of about 76% for film doped with 0.002 M of Ga concentration. Optical band gap for both undoped and doped films was in the range of 2.28 eV–2.44 eV. Electrical resistivity of the films decreased with an increase in dopant concentration, however beyond 0.002 M the resistivity increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Narasimman, V.S. Nagarethinam, K. Usharani, A.R. Balu, Structural, morphological, optical and electrical properties of spray deposited ternary CdAgS thin films towards optoelectronic applications. Mater. Res. Innov. 22, 79–84 (2016). https://doi.org/10.1080/14328917.2016.1264857

    Article  CAS  Google Scholar 

  2. D. Hariskos, S. Spiering, M. Powalla, Buffer layers in Cu(in,Ga)Se2 solar cells and modules. Thin Solid Films 480–481, 99–109 (2005). https://doi.org/10.1016/j.tsf.2004.11.118

    Article  CAS  Google Scholar 

  3. S. Sinha, D.K. Nandi, S.H. Kim, J. Heo, Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review. Sol. Energy Mater. Sol. Cells 176, 49–68 (2018). https://doi.org/10.1016/J.SOLMAT.2017.09.044

    Article  CAS  Google Scholar 

  4. S.A. Khalate, R.S. Kate, R.J. Deokate, A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: a focus towards efficiency. Sol. Energy 169, 616–633 (2018). https://doi.org/10.1016/j.solener.2018.05.036

    Article  CAS  Google Scholar 

  5. M.A. Contreras, M.J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward, K. Ramanathan, Optimization of CBD CdS process in high-efficiency Cu(in, Ga)Se2-based solar cells. Thin Solid Films 403, 204–211 (2002). https://doi.org/10.1016/S0040-6090%2801%2901538-3

    Article  Google Scholar 

  6. T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, B. Shin, Understanding the relationship between Cu2ZnSn(S, Se)4 material properties and device performance. MRS Commun. 4, 159–170 (2014). https://doi.org/10.1557/mrc.2014.34

    Article  CAS  Google Scholar 

  7. L. Ma, X. Ai, X. Wu, Effect of substrate and zn do** on the structural, optical and electrical properties of CdS thin films prepared by CBD method. J. Alloys Compd. 691, 399–406 (2016)

    Article  Google Scholar 

  8. S. Alhammadi, H. Jung, S. Kwon, H. Park, J. Shim, C.M. Hwan, M. Lee, J.S. Kim, W.K. Kim, Effect of Gallium do** on CdS thin film properties and corresponding Cu(InGa)Se2/CdS:Ga solar cell performance. Thin Solid Films 660, 207–212 (2018). https://doi.org/10.1016/j.tsf.2018.06.014

    Article  CAS  Google Scholar 

  9. L. Soussi, A. Rmili et al., Structural, optical and electrical properties of spray pyrolysis deposited CdS:Fe thin films. In: 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, 2018. https://doi.org/10.1109/IRSEC.2018.8702936

  10. F.J. Willars-Rodríguez, I.R. Chávez-Urbiola, M.A. HernándezLandaverde, R. Ramírez Bon, Y.V. Vorobiev, Effects of tin-do** on cadmium sulfide (CdS:sn) thin-films grown by light-assisted chemical bath deposition process for solar photovoltaic cell. Thin Solid Films 653, 341–349 (2018). https://doi.org/10.1016/j.tsf.2018.03.046

    Article  CAS  Google Scholar 

  11. H. Khallaf, Chemical bath deposition of group II–VI semiconductor thin films for solar cells applications. In: Electronic Thesis and Dissertations. 3941. (2009) https://stars.library.ucf.edu/etd/3941

  12. O.K. Echendu, S.Z. Werta, F.B. Dejene, A.A. Ojo, I.M. Dharmadasa, Ga do** of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration. J. Mater. Sci.: Mater. Electron. 30, 4977–4989 (2019). https://doi.org/10.1007/s10854-019-00794-3

    Article  CAS  Google Scholar 

  13. E. Soto, F. Vaquero, N. Mota, S. Fateixa, T. Trindade, R.M. Navarro, J.L.G. Fierro, Structure and photoactivity for hydrogen production of CdS nanorods modified with In, Ga, Ag-In and Ag-Ga and prepared by solvothermal method. Mater. Today Energy 9, 345–358 (2018). https://doi.org/10.1016/j.mtener.2018.06.009

    Article  Google Scholar 

  14. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis. J. Alloys Compd. 557, 53–59 (2013). https://doi.org/10.1016/j.jallcom.2012.12.136

    Article  CAS  Google Scholar 

  15. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  16. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  17. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charac. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  18. P.Q. Zhao, L.Z. Liu, H.T. Xue, X.L. Wu, J.C. Shen, P.K. Chu, Resonant Raman scattering from CdS nanocrystals enhanced by interstitial mn. Appl. Phys. Lett. 102, 061910 (2013). https://doi.org/10.1063/1.4792512

    Article  CAS  Google Scholar 

  19. J. Trajić, M. Gilić, N. Romčević, M. Romčević, G. Stanišić, B. Hadžić, M. Petrović, Y.S. Yahia, Raman spectroscopy of optical properties in CdS thin films. Sci. Sinter. 47, 145–152 (2015). https://doi.org/10.2298/SOS1502145T

    Article  Google Scholar 

  20. J. Díaz-Reyes, J.I. Contreras-Rascón, M. Galván-Arellano, J.S. Arias-Cerón, J.E.M. Gutiérrez-Arias, J.E. Flores-Mena, Morín-Castillo, physical property characterization of Pb2+ doped CdS nanofilms deposited by chemical-bath deposition at low temperature. Braz J. Phys. 46, 612–620 (2016). https://doi.org/10.1007/s13538-016-0445-0

    Article  CAS  Google Scholar 

  21. S. Yilmaz, I. Polat, M.A. Olgar, M. Tomakin, S.B. Töreli, E. Bacaksiz, Physical properties of CdS:Ga thin films synthesized by spray pyrolysis technique. J. Mater. Sci.: Mater. Electron. 28, 3191–3199 (2017). https://doi.org/10.1007/s10854-016-5908-0

    Article  CAS  Google Scholar 

  22. E. Akbarnejad, Z. Ghorannevis, F. Abbasi, M. Ghoranneviss, Investigation of annealing temperature effect on magnetron sputtered cadmium sulfide thin film properties. J. Theor. Appl. Phys. 11, 45–49 (2017). https://doi.org/10.1007/s40094-016-0237-5

    Article  Google Scholar 

  23. R. Olvera-Rivas, F. De moure-flores, S.A. Mayén-hernández, J. Quiñones-galvan, A. Centeno, A. Sosa-domínguez, Santos-cruz, effect of indium do** on structural, optical and electrical properties of cadmium sulfide thin films. Chalcogenide Lett. 17(7), 329–336 (2020)

    Article  CAS  Google Scholar 

  24. X. Liu, Q. Zhang, J.N. Yip, Q. **ong, T.C. Sum, Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein–Moss effect. Nano Lett. (2013). https://doi.org/10.1021/nl402836x

    Article  Google Scholar 

  25. L. Pholds, M.E. Samiji, N.R. Mlyuka, B.S. Richards, R.T. Kivaisi, Boron doped zinc oxide films grown by dc reactive magnetron sputtering. In: 28th European Photovoltaic Solar Energy Conference and Exhibition (28th EU PVSEC) Paris, 30 September–04 October, pp. 2311–2315 (2013)

  26. J. Cai, J. Jie, P. Jiang, D. Wu, C. ** and their nano-optoelectronic applications. Phys. Chem. Chem. Phys. 13, 14663–14667 (2011). https://doi.org/10.1039/C1CP21104H

    Article  CAS  Google Scholar 

  27. S. Yilmaz, I. Polat, M. Tomakin, T. Küçükömeroğlu, S.B. Töreli, E. Bacaksiz, Sm-doped CdS thin films prepared by spray pyrolysis: a structural, optical and electrical examination. Appl. Phys. A 124, 502 (2018). https://doi.org/10.1007/s00339-018-1922-9

    Article  CAS  Google Scholar 

  28. A. Fernández-Perez, C. Navarrete, P. Valenzuela, W. Gacitúa, E. Mosquera, H. Fernández, Characterization of chemically deposited aluminum-doped CdS thin films with post-deposition thermal annealing. Thin Solid Films 623, 127–134 (2016). https://doi.org/10.1016/j.tsf.2016.12.036

    Article  CAS  Google Scholar 

  29. S. Yilmaz, I. Polat, M. Tomakin, T. Küçükömeroğlu, S.B. Töreli, E. Bacaksiz, Optical and electrical optimization of dysprosium doped CdS thin films. J. Mater. Sci.: Mater. Electron. 29, 14774–14782 (2018). https://doi.org/10.1007/s10854-018-9613-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the University of Dar es Salaam, The World Academy of Sciences, and International Science Programme for financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GS; Methodology: GS; Formal analysis and investigation: GS and ETS; Writing - original draft preparation: GS; Writing - review and editing: GS, MES, NRM and ETS; Funding acquisition: MES and NRM; Resources: GS, MES and NRM; Supervision: MES and NRM.

Corresponding author

Correspondence to Gilya Sungi.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sungi, G., Samiji, M.E., Mlyuka, N.R. et al. Effect of Ga do** on optical transmittance and electrical conductivity of CdS thin films. J Mater Sci: Mater Electron 34, 768 (2023). https://doi.org/10.1007/s10854-023-10185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10185-4

Navigation