Log in

Radio-photoluminescence properties of Eu-doped SrAl2O4 ceramics and thermally assisted charge transfer process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Radio-photoluminescence (RPL) properties of Eu-doped SrAl2O4 are studied focusing on the generation of a luminescent center by ionizing radiation of X-ray and its extinction by a thermally assisted charge transfer. The single phases of SrAl2O4 doped with Eu at concentrations of 0.05–1.0% are synthesized via solid-state reactions, as confirmed by X-ray diffractions analyses. They show photoluminescence (PL) due to both Eu3+ and Eu2+, and the PL intensity due to Eu3+ decreases after X-ray irradiation while the one due to Eu2+ notably increases. This indicates that Eu2+ as a luminescence center is generated as RPL through reduction from Eu3+ to Eu2+ by ionizing radiation of X-ray. Particularly, the 0.1% Eu-doped sample shows the highest sensitivity to X-ray dose, and the lowest detection limit is estimated to be 0.3 Gy with the present reader system. The RPL signal is reasonably stable, and it depends on the concentration of Eu. In the case of 1.0% Eu-doped sample, signal fading is not observed even after 20 times of PL measurement. Despite the stable signal, the RPL can be intentionally reversed by heat. Particularly, the 0.1% Eu-doped sample shows a 90% decrease by heating at 500 °C for 10 min. The erasure of signal was explained as a thermally assisted charge transfer, which is supported by the thermally stimulated luminescence studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Okada, J. Ceram. Soc. Japan 129, 21056 (2021)

    Article  Google Scholar 

  2. G. Okada, T. Yanagida, H. Nanto, S. Kasap, Radiophotoluminescence (RPL), in Phosphors for Radiation Detectors. ed. by T. Yanagida, M. Koshimizu (Wiley, Hoboken, 2022), pp.247–281

    Chapter  Google Scholar 

  3. D.F. Regulla, Health Phys. 22, 491 (1972)

    Article  CAS  Google Scholar 

  4. M.S. Akselrod, A.E. Akselrod, Radiat. Prot. Dosimetry 119, 218 (2006)

    Article  CAS  Google Scholar 

  5. J. Nandha Gopal, B. Sanyal, A. Lakshmanan, Radiat. Meas. (2018). https://doi.org/10.1093/rpd/nci663

    Article  Google Scholar 

  6. R. Yokota, H. Imagawa, J. Phys. Soc. Japan 23, 1038 (1966)

    Article  Google Scholar 

  7. Y. Miyamoto, Y. Takei, H. Nanto, T. Kurobori, A. Konnai, T. Yanagida, A. Yoshikawa, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, Y. Nagashima, T. Yamamoto, Radiat. Meas. 46, 1480 (2011)

    Article  CAS  Google Scholar 

  8. J. Qiu, K. Hirao, J. Mater. Sci. Lett. 20, 691 (2001)

    Article  CAS  Google Scholar 

  9. G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, Phys. Status Solidi Curr. Top. Solid State Phys. 8, 2822 (2011).

  10. S.R. Nair, V.K. Kondawar, S.V. Upadeo, S.V. Moharil, T.K. Gundurao, J. Phys. Condens. Matter 9, 8307 (1997)

    Article  CAS  Google Scholar 

  11. S.V. Upadeo, S.V. Moharil, J. Phys. Condens. Matter 9, 735 (1997)

    Article  CAS  Google Scholar 

  12. T. Yamamoto, Y. Yanagida-Miyamoto, T. Iida, H. Nanto, Radiat. Meas. 136, 106363 (2020)

    Article  CAS  Google Scholar 

  13. J.I. Lee, J.L. Kim, A.S. Pradhan, B.H. Kim, K.S. Chung, H.S. Choe, Radiat. Meas. 43, 303 (2008)

    Article  CAS  Google Scholar 

  14. P.A. Jursinic, Med. Phys. 37, 132 (2010)

    Article  CAS  Google Scholar 

  15. J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, in J. Alloys Compd. (2001), pp. 326–330.

  16. R.E. Rojas-Hernandez, F. Rubio-Marcos, M.Á. Rodriguez, J.F. Fernandez, Renew. Sustain. Energy Rev. 81, 2759 (2018)

    Article  CAS  Google Scholar 

  17. C.N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74, 2414 (1999)

    Article  CAS  Google Scholar 

  18. V. Abbruscato, J. Electrochem. Soc. 118, 930 (1971)

    Article  CAS  Google Scholar 

  19. W. Hoogenstraaten, H.A. Klasens, J. Electrochem. Soc. 100, 366 (1953)

    Article  CAS  Google Scholar 

  20. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc. 143, 2670 (1996)

    Article  CAS  Google Scholar 

  21. I. Tsutai, T. Kamimura, K. Kato, F. Kaneko, K. Shinbo, M. Ohta, T. Kawakami, I.E.E.J. Trans, Fundam. Mater. 118, 1015 (1998)

    Article  Google Scholar 

  22. J. Ueda, T. Nakanishi, Y. Katayama, S. Tanabe, Phys. Status Solidi (2012). https://doi.org/10.1002/pssc.201200299

    Article  Google Scholar 

  23. T. Nakanishi, K. Watanabe, J. Ueda, K. Fushimi, S. Tanabe, Y. Hasegawa, J. Am. Ceram. Soc. 98, 423 (2014)

    Article  Google Scholar 

  24. D. Nakauchi, G. Okada, M. Koshimizu, T. Yanagida, J. Lumin. 176, 342 (2016)

    Article  CAS  Google Scholar 

  25. W. Jia, H. Yuan, S. Holmstrom, H. Liu, W.M. Yen, J. Lumin. 83–84, 465 (1999)

    Article  Google Scholar 

  26. Y. Kohara, G. Okada, I. Tsuyumoto, E. Kusano, H. Nanto, Mater. Lett. 303, 130502 (2021)

    Article  CAS  Google Scholar 

  27. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, J. Appl. Crystallogr. 41, 815 (2008)

    Article  CAS  Google Scholar 

  28. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, J. Appl. Crystallogr. 48, 598 (2015)

    Article  CAS  Google Scholar 

  29. G. Okada, K. Hirasawa, T. Yanagida, H. Nanto, Sensors Mater. 33, 2117 (2021)

    Article  Google Scholar 

  30. D. Dutczak, T. Jüstel, C. Ronda, A. Meijerink, Phys. Chem. Chem. Phys. 17, 15236 (2015)

    Article  CAS  Google Scholar 

  31. A. De, A.K. Dey, B. Samanta, U.K. Ghorai, J. Mater. Sci. Mater. Electron. 32, 8648 (2021)

    Article  CAS  Google Scholar 

  32. K. Binnemans, Coord. Chem. Rev. 295, 1 (2015)

    Article  CAS  Google Scholar 

  33. M. Ayvacikli, A. Ege, S. Yerci, N. Can, J. Lumin. 131, 2432 (2011)

    Article  CAS  Google Scholar 

  34. M.L. Chithambo, A.H. Wako, A.A. Finch, Radiat. Meas. 97, 1 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Grant-in-Aid for Scientific Research (B) (22H02009) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government (MEXT), Shibuya Science Culture and Sports Foundation, Japan, Iwatani Naoji Foundation, Japan, and the Murata Science Foundation.

Funding

Funding was provided by Japan Society for the Promotion of Science, (Grant No. 22H02009), Hidehito Nanto, Shibuya Science Culture and Sports Foundation, Iwatani Naoji Foundation, Murata Science Foundation

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YK and GO. The first draft of the manuscript was written by YK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Fundings to conduct this research were acquired by GO and HN.

Corresponding author

Correspondence to Yuto Kohara.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

The present research does not involve Human Participants and/or Animals as well as any investigations which require getting informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohara, Y., Okada, G., Tsuyumoto, I. et al. Radio-photoluminescence properties of Eu-doped SrAl2O4 ceramics and thermally assisted charge transfer process. J Mater Sci: Mater Electron 34, 472 (2023). https://doi.org/10.1007/s10854-022-09759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09759-5

Navigation