Log in

Flexible transparent conductive films based on silver nanowires by ultrasonic spraying process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanowires (AgNWs) are considered as an ideal material to substitute indium tin oxide (ITO) owing to their outstanding characteristics, such as excellent electrical conductivity, transmittance, and bending properties. Ultrasonic spraying method is used to fabricate AgNWs films because of its high efficiency, controllability, and high uniformity of coating. In this work, high-purity AgNWs with an average diameter of 45 nm and an average length of 20 μm were prepared via acetone settling and ethanol washing of the products obtained by a simple solvothermal method. Subsequently, flexible transparent conductive films with sheet resistance non-uniformity less than 8% were prepared through Ultrasonic spraying AgNWs and modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) upon polyethylene terephthalate (PET) substrate successively, and the surface roughness of the films was lessened by mechanical hot pressing. Finally, PET/AgNWs/PEDOT:PSS films were obtained with a transmittance at 550 nm of 85.06%, a sheet resistance of 45 Ω/sq, a haze of 3%, and a root mean square roughness of 14.1 nm. After being placed in air under normal temperature for two months and mechanical bending for 1000 times, respectively, the sheet resistance of the films showed only a slight change, which suggested that it was an excellent material to displace the conventional transparent conductive films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this paper and on a request from the corresponding author.

References

  1. Z.-R. Zhu, W. Geng, Q. Zhu et al., Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abb906

    Article  Google Scholar 

  2. T. Wang, L.-C. **g, Q. Zhu et al., Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.143997

    Article  Google Scholar 

  3. J. Kwon, H. Cho, H. Eom et al., ACS Appl. Mater. Interfaces 8, 11575 (2016). https://doi.org/10.1021/acsami.5b12714

    Article  CAS  Google Scholar 

  4. H.S. Kang, J. Choi, W. Cho et al., J. Mater. Chem. C 4, 9834 (2016). https://doi.org/10.1039/c6tc03817d

    Article  CAS  Google Scholar 

  5. M.A. Shinde, K. Mallikarjuna, J. Noh, H. Kim, Thin Solid Films 660, 447 (2018). https://doi.org/10.1016/j.tsf.2018.06.054

    Article  CAS  Google Scholar 

  6. Y. Zhang, S.-W. Ng, X. Lu, Z. Zheng, Chem. Rev. 120, 2049 (2020). https://doi.org/10.1021/acs.chemrev.9b00483

    Article  CAS  Google Scholar 

  7. S. Yu, X. Liu, H. Dong, X. Wang, L. Li, Ceram. Int. 47, 20379 (2021). https://doi.org/10.1016/j.ceramint.2021.04.046

    Article  CAS  Google Scholar 

  8. M. Wu, H. Zheng, X. Li, S. Yu, Ceram. Int. 46, 4344 (2020). https://doi.org/10.1016/j.ceramint.2019.10.157

    Article  CAS  Google Scholar 

  9. S. Ye, A.R. Rathmell, Z. Chen, I.E. Stewart, B.J. Wiley, Adv. Mater. 26, 6670 (2014). https://doi.org/10.1002/adma.201402710

    Article  CAS  Google Scholar 

  10. J.P. Thomas, M.A. Rahman, S. Srivastava et al., ACS Nano 12, 9495 (2018). https://doi.org/10.1021/acsnano.8b04848

    Article  CAS  Google Scholar 

  11. B. Wang, M. Baeuscher, X. Hu et al., Micromachines (2020). https://doi.org/10.3390/mi11050474

    Article  Google Scholar 

  12. K.A. Sierros, D.S. Hecht, D.A. Banerjee et al., Thin Solid Films 518, 6977 (2010). https://doi.org/10.1016/j.tsf.2010.07.026

    Article  CAS  Google Scholar 

  13. H. Sun, X. Li, Y. Li et al., Chem. Mater. 29, 7808 (2017). https://doi.org/10.1021/acs.chemmater.7b02348

    Article  CAS  Google Scholar 

  14. P. Lee, J. Lee, H. Lee et al., Adv. Mater. 24, 3326 (2012). https://doi.org/10.1002/adma.201200359

    Article  CAS  Google Scholar 

  15. J. Liu, Y. Zhang, W. Cheng et al., J. Colloid Interface Sci. 608, 2493 (2022). https://doi.org/10.1016/j.jcis.2021.10.171

    Article  CAS  Google Scholar 

  16. B. Zheng, Q. Zhu, Y. Zhao, J. Mater. Sci. Technol 71, 221 (2021). https://doi.org/10.1016/j.jmst.2020.07.021

    Article  CAS  Google Scholar 

  17. S. Fahad, H. Yu, W. Li et al., Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124643

    Article  Google Scholar 

  18. L. Zhang, F. Jiang, B. Wu, C. Lv, M. Wu, Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abce7a

    Article  Google Scholar 

  19. J. Xu, J. Hu, C. Peng, H. Liu, Y. Hu, J. Colloid Interface Sci. 298, 689 (2006). https://doi.org/10.1016/j.jcis.2005.12.047

    Article  CAS  Google Scholar 

  20. R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, K.I. Winey, ACS Nano 7, 7654 (2013). https://doi.org/10.1021/nn403324t

    Article  CAS  Google Scholar 

  21. B. Li, S. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Nano Lett. 15, 6722 (2015). https://doi.org/10.1021/acs.nanolett.5b02582

    Article  CAS  Google Scholar 

  22. Y. Li, X. Yuan, H. Yang, Y. Chao, S. Guo, C. Wang, Materials (2019). https://doi.org/10.3390/ma12030401

    Article  Google Scholar 

  23. Z. Niu, F. Cui, E. Kuttner et al., Nano Lett. 18, 5329 (2018). https://doi.org/10.1021/acs.nanolett.8b02479

    Article  CAS  Google Scholar 

  24. Y. Li, Y. Li, Z. Fan, H. Yang, X. Yuan, C. Wang, RSC Adv. 10, 21369 (2020). https://doi.org/10.1039/d0ra03140b

    Article  CAS  Google Scholar 

  25. G. Naz, H. Asghar, M. Ramzan et al., Beilstein J. Nanotechnol. 12, 624 (2021). https://doi.org/10.3762/bjnano.12.51

    Article  CAS  Google Scholar 

  26. D. Shin, T. Kim, B.T. Ahn, S.M. Han, ACS Appl. Mater. Interfaces 7, 13557 (2015). https://doi.org/10.1021/acsami.5b02989

    Article  CAS  Google Scholar 

  27. S. Duan, L. Zhang, Z. Wang, C. Li, RSC Adv. 5, 95280 (2015). https://doi.org/10.1039/c5ra19148c

    Article  CAS  Google Scholar 

  28. D. Li, L. Wang, W. Ji et al., ACS Appl. Mater. Interfaces 13, 1735 (2021). https://doi.org/10.1021/acsami.0c16066

    Article  CAS  Google Scholar 

  29. R. Xue, X. Wang, X. Chen, M. Zhang, S. Qi, J. Mater. Sci. 51, 7211 (2016). https://doi.org/10.1007/s10853-016-0002-9

    Article  CAS  Google Scholar 

  30. Z. Wang, K. Sun, H. Wu et al., J. Mater. Sci. 55, 15481 (2020). https://doi.org/10.1007/s10853-020-05126-z

    Article  CAS  Google Scholar 

  31. T.C. Hauger, S.M.I. Al-Rafia, J.M. Buriak, ACS Appl. Mater. Interfaces 5, 12663 (2013). https://doi.org/10.1021/am403986f

    Article  CAS  Google Scholar 

  32. L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2955 (2010). https://doi.org/10.1021/nn1005232

    Article  CAS  Google Scholar 

  33. X.-Y. Zeng, Q.-K. Zhang, R.-M. Yu, C.-Z. Lu, Adv. Mater. 22, 4484 (2010). https://doi.org/10.1002/adma.201001811

    Article  CAS  Google Scholar 

  34. S. Kim, S.Y. Kim, J. Kim, J.H. Kim, J. Mater. Chem. C 2, 5636 (2014). https://doi.org/10.1039/c4tc00686k

    Article  CAS  Google Scholar 

  35. S. Zhang, X. Liu, T. Lin, P. He, J. Mater. Sci. Mater. Electron. 30, 18702 (2019). https://doi.org/10.1007/s10854-019-02223-x

    Article  CAS  Google Scholar 

  36. Y. Zhang, S. Bai, T. Chen, H. Yang, X. Guo, Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab6262

    Article  Google Scholar 

  37. Y. Wang, X. Wu, K. Wang et al., Int. J. Mol. Sci. (2021). https://doi.org/10.3390/ijms22147719

    Article  Google Scholar 

  38. X. Wu, S. Wang, Z. Luo et al., Nanomaterials (2021). https://doi.org/10.3390/nano11061571

    Article  Google Scholar 

  39. R. Banica, D. Ursu, P. Svera et al., Part. Sci. Technol. 34, 217 (2016). https://doi.org/10.1080/02726351.2015.1066473

    Article  CAS  Google Scholar 

  40. W. Lee, K.D. Kihm, W. Lee et al., Int. J. Heat Mass Transf. 134, 547 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.052

    Article  CAS  Google Scholar 

  41. K. Lang, M. Klein, G. Domann, P. Loebmann, J. Solgel Sci. Technol. 96, 121 (2020). https://doi.org/10.1007/s10971-020-05330-y

    Article  CAS  Google Scholar 

  42. I. Verboven, J. Silvano, K. Elen et al., Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202100808

    Article  Google Scholar 

  43. Y.-H. Ko, J.-W. Lee, W.-K. Choi, S.-R. Kim, Chem. Lett. 43, 1242 (2014). https://doi.org/10.1246/cl.140220

    Article  CAS  Google Scholar 

  44. W. Zhou, A. Hu, S. Bai, Y. Ma, D. Bridges, RSC Adv. 5, 39103 (2015). https://doi.org/10.1039/c5ra04214c

    Article  CAS  Google Scholar 

  45. S. Kang, T. Kim, S. Cho et al., Nano Lett. 15, 7933 (2015). https://doi.org/10.1021/acs.nanolett.5b03019

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (51672201).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design, data collection, and analysis were performed by XF. Material preparation and experimental guidance were performed by XW. BZ, JG, CX, and SZ jointly reviewed and checked the experimental procedures and results. The first draft of the manuscript was written by XF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to **ang Wang.

Ethics declarations

Conflict of interest

All authors have read and agreed to the published version of the manuscript. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Wang, X., Zhang, B. et al. Flexible transparent conductive films based on silver nanowires by ultrasonic spraying process. J Mater Sci: Mater Electron 33, 25939–25949 (2022). https://doi.org/10.1007/s10854-022-09284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09284-5

Navigation