Log in

Effect of Mg and Al cosubstitution on the structure and electrochemical performance of a Co-free LiNiO2 cathode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A LiNiO2 cathode material was cosubstituted with Mg and Al to obtain LiNi0.90Mg0.05Al0.05O2 via solid-state sintering of a mixture containing stoichiometric amounts of Ni(OH)2 precursor, LiOH·H2O, MgO, and Al2O3. The number of Li/Ni anti-site defects shown by X-ray diffraction was significantly reduced after cosubstitution of Mg and Al, and a 2–3 nm spinel-like structure was directly observed on the surface of LiNi0.90Mg0.05Al0.05O2 by Cs-corrected scanning transmission electron microscopy. This cosubstitution-induced structural modification enhanced the stability of the material during cycling. The LiNi0.90Mg0.05Al0.05O2 half-cell showed an initial capacity of 210.8 mAh/g at 0.1 C (2.75–4.3 V) and excellent capacity retention of ~ 93.1% after 300 subsequent cycles at 1 C. In contrast, the bare LiNiO2 half-cell exhibited a capacity retention of only ~ 23.4% under the same cycling conditions, despite a high initial specific capacity of 238.1 mAh/g. Furthermore, the LiNi0.90Mg0.05Al0.05O2 half-cell also showed a much better rate performance than its bare LiNiO2 counterpart, with capacity retention levels at 5 C of 68.1% for the former and only 5.2% for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  2. M.S. Whittingham, Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 20, 8435–8437 (2020)

    Article  CAS  Google Scholar 

  3. A. Ueda, T. Ohzuku, Solid-state redox reactions of LiNi1/2Co1/2O2 (R-3m) for 4-volt secondary lithium cells. J. Electrochem. Soc. 141, 2010–2014 (1994)

    Article  CAS  Google Scholar 

  4. J.R. Dahn, U. Vonsacken, M.W. Juzkow, H. Aljanaby, Rechargeable LiNiO2 carbon cells. J. Electrochem. Soc. 138, 2207–2211 (1991)

    Article  CAS  Google Scholar 

  5. K.K. Cheralathan, N.Y. Kang, H.S. Park, Y.J. Lee, W.C. Choi, Y.S. Ko, Y.K. Park, Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation. J. Power Sources 195, 1486–1494 (2010)

    Article  CAS  Google Scholar 

  6. T. Ohzuku, A. Ueda, M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 (R-3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 140, 1862–1870 (1993)

    Article  CAS  Google Scholar 

  7. N. Zhang, N. Zaker, H.Y. Li, A. Liu, J. Inglis, L. **g, J. Li, Y. Li, G.A. Botton, J.R. Dahn, Cobalt-free nickel-rich positive electrode materials with a core-shell structure. Chem. Mater. 31, 10150–10160 (2019)

    Article  CAS  Google Scholar 

  8. Y.K. Sun, Z.H. Chen, H.J. Noh, D.J. Lee, H.G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012)

    Article  CAS  Google Scholar 

  9. W.M. Seong, A. Manthiram, Complementary effects of Mg and Cu incorporation in stabilizing the cobalt-free LiNiO2 cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 43653–43664 (2020)

    Article  CAS  Google Scholar 

  10. A. Konarov, S.T. Myung, Y.K. Sun, Cathode materials for future electric vehicles and energy storage systems. ACS Energy Lett. 2, 703–708 (2017)

    Article  CAS  Google Scholar 

  11. B. Huang, Z.Y. Zhao, Y.Z. Sun, M. Wang, L. Chen, Y.J. Gu, Lithium-ion conductor LiAlO2 coated LiNi0.8Mn0.1Co0.1O2 as cathode material for lithium-ion batteries. Solid State Ion. 338, 31–38 (2019)

    Article  CAS  Google Scholar 

  12. H.Y. Li, A.R. Liu, N. Zhang, Y.Q. Wang, S. Yin, H.H. Wu, J.R. Dahn, An unavoidable challenge for ni-rich positive electrode materials for lithium-ion batteries. Chem. Mater. 31, 7574–7583 (2019)

    Article  CAS  Google Scholar 

  13. L.Q. Mu, W.H. Kan, C.G. Kuai, Z.J. Yang, L.X. Li, C.J. Sun, S. Sainio, M. Avdeev, D. Nordlund, F. Lin, Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020)

    Article  CAS  Google Scholar 

  14. N. Voronina, Y.K. Sun, S.T. Myung, Co-free layered cathode materials for high energy density lithium-ion batteries. ACS Energy Lett. 5, 1814–1824 (2020)

    Article  CAS  Google Scholar 

  15. K. Wang, J.J. Wan, Y.X. **ang, J.P. Zhu, Q.Y. Leng, M. Wang, L.M. Xu, Y. Yang, Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. J. Power Sources 460, 228062 (2020)

    Article  CAS  Google Scholar 

  16. Y.K. Sun, D.J. Lee, Y.J. Lee, Z. Chen, S.T. Myung, Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 11434–11440 (2013)

    Article  CAS  Google Scholar 

  17. N. Yabuuchi, Y.T. Kim, H.H. Li, Y. Shao-Horn, Thermal instability of cycled LixNi0.5Mn0.5O2 electrodes: an in situ synchrotron X-ray powder diffraction study. Chem. Mater. 20, 4936–4951 (2008)

    Article  CAS  Google Scholar 

  18. J. Xu, F. Lin, M.M. Doeff, W. Tong, A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 5, 874–901 (2017)

    Article  CAS  Google Scholar 

  19. P.K. Nayak, E.M. Erickson, F. Schipper, T.R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky, D. Aurbach, Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018)

    Article  CAS  Google Scholar 

  20. A. Aishova, G.-T. Park, C.S. Yoon, Y.-K. Sun, Cobalt-free high-capacity Ni-rich layered Li Ni0.9Mn0.1O2 cathode. Adv. Energy Mater. 10, 1903179 (2020)

    Article  CAS  Google Scholar 

  21. J.T. Zhang, X.H. Tan, L.M. Guo, Y. Jiang, S.N. Liu, H.F. Wang, X.H. Kang, W.G. Chu, Origin of performance differences of nickel-rich LiNi0.9Mn0.1O2 cathode materials synthesized in oxygen and air. Energy Technol.-Ger 7, 1800752 (2019)

    Article  CAS  Google Scholar 

  22. H.X. Ji, L.B. Ben, H.L. Yu, R.H. Qiao, W.W. Zhao, X.J. Huang, Electrolyzed Ni(OH)2 precursor sintered with LiOH/LiNiO3 mixed salt for structurally and electrochemically stable cobalt-free LiNiO2 cathode materials. ACS Appl. Mater. Interfaces 13, 50965–50974 (2021)

    Article  CAS  Google Scholar 

  23. F. Tian, L. Ben, H. Yu, H. Ji, W. Zhao, Z. Liu, R. Monteiro, R.M. Ribas, Y. Zhu, X. Huang, Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O layered cathode material. Nano Energy 98, 107222 (2022)

    Article  CAS  Google Scholar 

  24. A.M. Wang, N. Bai, Improved electrochemical cycling performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials by coating with spinel MgAl2O4. Solid State Ion. 336, 19–25 (2019)

    Article  CAS  Google Scholar 

  25. N. Bai, Y.-J. Ma, A.-M. Wang, X. Luo, Effects of MoO3 coating on the structure and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4. Ionics 27, 469–478 (2021)

    Article  CAS  Google Scholar 

  26. T. Rao, P. Gao, Z. Zhu, S. Wang, L. Ben, Y. Zhu, Structural, electrochemical, and Li-ion diffusion properties of Mg&Mn dual doped LiNiO2 cathode materials for Li-ion batteries. Solid State Ion. 376, 115860 (2022)

    Article  CAS  Google Scholar 

  27. T. Rao, P. Gao, Z.M. Zhu, S. Wang, L.B. Ben, Y.M. Zhu, Structural, electrochemical, and Li-ion diffusion properties of Mg&Mn dual doped LiNiO2 cathode materials for Li-ion batteries. Solid State Ion. 376, 115860 (2022)

    Article  CAS  Google Scholar 

  28. D. Weber, J. Lin, A. Pokle, K. Volz, J. Janek, T. Brezesinski, M. Bianchini, Tracing low amounts of Mg in the doped cathode active material LiNiO2. J. Electrochem. Soc. 169, 030540 (2022)

    Article  Google Scholar 

  29. L. ** strategy to enhance the structural stability and long cycle life of LiNi0.8Co0.1Mn0.1O2 cathode material. Ionics 28, 3101–3112 (2022)

    Article  CAS  Google Scholar 

  30. H.B. Zhang, Y. Zhang, T.T. Du, X. Cheng, B.B. Zhao, W.J. Qiang, Enhanced cycle stability of Ni-rich LiNi0.83Co0.12Mn0.05O2 with Mg and La co-modification. J. Solid State Electrochem. 26, 1085–1095 (2022)

    Article  CAS  Google Scholar 

  31. A. Liu, N. Zhang, H. Li, J. Inglis, Y. Wang, S. Yin, H. Wu, J.R. Dahn, Investigating the effects of magnesium do** in various Ni-rich positive electrode materials for lithium ion batteries. J. Electrochem. Soc. 166, A4025–A4033 (2019)

    Article  CAS  Google Scholar 

  32. U.-H. Kim, L.-Y. Kuo, P. Kaghazchi, C.S. Yoon, Y.-K. Sun, Quaternary layered Ni-Rich NCMA cathode for lithium-ion batteries. ACS Energy Lett. 4, 576–582 (2019)

    Article  CAS  Google Scholar 

  33. H.Y. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J.R. Dahn, Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J. Electrochem. Soc. 166, A429–A439 (2019)

    Article  CAS  Google Scholar 

  34. S. Sun, D. Li, C. Yang, L. Fu, D. Kong, Y. Lu, Y. Guo, D. Liu, P. Guan, Z. Zhang, J. Chen, W. Ming, L. Wang, X. Han, Direct atomic-scale observation of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp structures under bending. Phys. Rev. Lett. 128, 015701 (2022)

    Article  CAS  Google Scholar 

  35. L. Wang, Y. Zhang, Z. Zeng, H. Zhou, J. He, P. Liu, M. Chen, J. Han, D.J. Srolovitz, J. Teng, Y. Guo, G. Yang, D. Kong, E. Ma, Y. Hu, B. Yin, X. Huang, Z. Zhang, T. Zhu, X. Han, Tracking the sliding of grain boundaries at the atomic scale. Science 375, 1261–1265 (2022)

    Article  CAS  Google Scholar 

  36. F. Tian, Y. Zhang, Z. Liu, R. de Souza Monteiro, R.M. Ribas, P. Gao, Y. Zhu, H. Yu, L. Ben, X. Huang, Investigation of structure and cycling performance of Nb5+ doped high-nickel ternary cathode materials. Solid State Ion. 359, 115520 (2021)

    Article  CAS  Google Scholar 

  37. Q.Y. Lin, W.H. Guan, J. Meng, W. Huang, X. Wei, Y.W. Zeng, J.X. Li, Z. Zhang, A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano Energy 54, 313–321 (2018)

    Article  CAS  Google Scholar 

  38. L. Ben, H. Yu, B. Chen, Y. Chen, Y. Gong, X. Yang, L. Gu, X. Huang, Unusual spinel-to-layered transformation in LiMn2O4 cathode explained by electrochemical and thermal stability investigation. ACS Appl. Mater. Interfaces 9, 35463–35475 (2017)

    Article  CAS  Google Scholar 

  39. L.B. Ben, H.L. Yu, Y.D. Wu, B. Chen, W.W. Zhao, X.J. Huang, Ta2O5 coating as an HF barrier for improving the electrochemical cycling performance of high-voltage spinel LiNi0.5Mn1.5O4 at elevated temperatures. ACS Appl. Energy Mater. 1, 5589–5598 (2018)

    Article  CAS  Google Scholar 

  40. C.S. Yoon, H.-H. Ryu, G.-T. Park, J.-H. Kim, K.-H. Kim, Y.-K. Sun, Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J. Mater. Chem. A 6, 4126–4132 (2018)

    Article  CAS  Google Scholar 

  41. G.G. Min, Y. Ko, T.H. Kim, H.K. Song, S.B. Kim, S.M. Park, Fourier transform electrochemical impedance spectroscopic studies on LiFePO4 nanoparticles of hollow sphere secondary structures. J. Electrochem. Soc. 158, A1267–A1274 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by YLU-DNL fund (Grant No. 2021002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. Material preparation was performed by NB, YQ, and DG. Data collection and analysis were performed by ZS. The first draft of the manuscript was written by GC and AW. All authors commented on previous versions of the manuscript. Final manuscript read and approved by all authors.

Corresponding authors

Correspondence to Guilin Chen or Aimin Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no personal or financial conflict of interest.

Ethical approval

Hereby, we declare that the manuscript is our original work and have not been published or under editorial considerations anywhere else. The stated authors of the work have read the content and approved for submission of this manuscript to Journal of Materials Science: Materials in Electronics. There is no personal or financial conflict of interest. Further if our article has been accepted, we ensure that we will not publish it anywhere else in any form, in any language without getting consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, N., Qi, Y., Sun, Z. et al. Effect of Mg and Al cosubstitution on the structure and electrochemical performance of a Co-free LiNiO2 cathode material. J Mater Sci: Mater Electron 33, 18533–18543 (2022). https://doi.org/10.1007/s10854-022-08705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08705-9

Navigation