Log in

Tuning the Al content for flake Fe3Al powder to achieve wideband electromagnetic wave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe3Al powders with different Al contents were prepared by a mechanical alloying and ordering process. The obtained flake-like structure has the average size of approximately 2 µm and the average thickness of around 300 nm. The Al content affects the magnetic properties of the obtained samples. With the increase of Al content from 22 to 30 at.%, the saturation magnetization of the sample increases from 161.9 to 167.5 emu/g. However, when the Al content is further increased to 32 at.%, the saturation magnetization decreases to 163.3 emu/g. When the Al content is 30 at.%, the flake Fe3Al powder has a minimum reflection loss value of − 50.5 dB. When the thickness is 1.25 mm, the bandwidth is as large as 6.0 GHz with a reflection loss value more negative than − 10 dB. The excellent electromagnetic wave absorption performance is attributed to the best impedance matching ratio and the excellent attenuation coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. W. Yang, B. Jiang, S. Che, L. Yan, Z.-X. Li, Y.-F. Li, Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms. New Carbon Mater. 36, 1016–1030 (2021)

    Article  Google Scholar 

  2. B. Bateer, X. Wang, C. Tian, Y. **e, K. Pan, W. **, H. Fu, Ni2P nanocrystals coated on carbon nanotubes as enhanced lightweight electromagnetic wave absorbers. Carbon 161, 51–61 (2020)

    Article  CAS  Google Scholar 

  3. G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8, 24368–24387 (2020)

    Article  CAS  Google Scholar 

  4. L. Yu, X. Lan, C. Wei, X. Li, X. Qi, T. Xu, C. Li, C. Li, Z. Wang, MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption. J. Alloys Compd. 748, 111–116 (2018)

    Article  CAS  Google Scholar 

  5. H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou, B. Fei, R. Wu, A flexible electromagnetic wave-electricity harvester. Nat. Commun. 12, 834 (2021)

    Article  CAS  Google Scholar 

  6. X. Zhang, J. Xu, H. Yuan, S. Zhang, Q. Ouyang, C. Zhu, X. Zhang, Y. Chen, Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Interfaces 11, 39100–39108 (2019)

    Article  CAS  Google Scholar 

  7. D. Lan, Z. Zhao, Z. Gao, K. Kou, H. Wu, Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 92, 51–59 (2021)

    Article  CAS  Google Scholar 

  8. J. Xu, X. Zhang, Z. Zhao, H. Hu, B. Li, C. Zhu, X. Zhang, Y. Chen, Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 17, 2102032 (2021)

    Article  CAS  Google Scholar 

  9. Z. Ma, H. Tian, L. Cong, Q. Wu, M. Yue, S. Sun, A flame-reaction method for the large-scale synthesis of high-performance SmxCoy nanomagnets. Angew. Chem. Int. Ed. 58, 14509–14512 (2019)

    Article  CAS  Google Scholar 

  10. J. Wei, T. Wang, F. Li, Effect of shape of Fe3Al particles on their microwave permeability and absorption properties. J. Magn. Magn. Mater. 323, 2608–2612 (2011)

    Article  CAS  Google Scholar 

  11. J. Wei, J. Wang, Q. Liu, L. Qiao, T. Wang, F. Li, Enhanced microwave absorption properties of Fe3Al/Al2O3 fine particle composites. J. Phys. D: Appl. Phys. 43, 115001 (2010)

    Article  CAS  Google Scholar 

  12. X. Luo, J. Cao, G. Meng, Y. Chuan, Z. Yao, H. **e, Systematical investigation on the microstructures and tribological properties of Fe-Al laser cladding coatings. Appl. Surf. Sci. 516, 146121 (2020)

    Article  CAS  Google Scholar 

  13. A. Nagy, U. Harms, F. Klose, H. Neuhäuser, Mechanical spectroscopy of ordered ferromagnetic Fe3Al intermetallic compounds. Mater. Sci. Eng. A 324, 68–72 (2002)

    Article  Google Scholar 

  14. S. Dash, A.V. Lukoyanov, Y.V. Knyazev, Y.I. Kuz’min, E.D. Baglasov, B. Weise, P. Kumar, M. Vasundhara, A.K. Patra, Impression of magnetic clusters, critical behavior and magnetocaloric effect in Fe3Al alloys. Phys. Chem. Chem. Phys. 21, 10823–10833 (2019)

    Article  CAS  Google Scholar 

  15. F. Mukhtar, Z.N. Kayani, S. Riaz, S. Naseem, Effect of in-situ oxidation on structure and ferromagnetic properties of Fe3Al and FeAl2O4 thin films prepared by electrodeposition. Ceram. Int. 44, 9550–9560 (2018)

    Article  CAS  Google Scholar 

  16. D. Jia, B. Liang, Z. Yang, Y. Zhou, Metastable Si-B-C-N ceramics and their matrix composites developed by inorganic route based on mechanical alloying: fabrication, microstructures, properties and their relevant basic scientific issues. Prog. Mater Sci. 98, 1–67 (2018)

    Article  CAS  Google Scholar 

  17. X. Luo, Z. Yao, P. Zhang, D. Gu, Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties. J. Alloys Compd. 755, 41–54 (2018)

    Article  CAS  Google Scholar 

  18. J. Wang, J. **ng, L. Cao, W. Su, Y. Gao, Dry sliding wear behavior of Fe3Al alloys prepared by mechanical alloying and plasma activated sintering. Wear 268, 473–480 (2010)

    Article  CAS  Google Scholar 

  19. Y. Zhang, M. Piao, H. Zhang, F. Zhang, J. Chu, X. Wang, H. Shi, C. Li, Synthesis of mesoporous hexagonal cobalt nanosheets with low permittivity for enhancing microwave absorption performances. J. Magn. Magn. Mater. 486, 165272 (2019)

    Article  CAS  Google Scholar 

  20. Y.-H. Liu, S.-K. Pan, L.-C. Cheng, J.-J. Yu, L. Huang, Effect of Misch-metal content on microwave absorption property of Ce2Co17 alloy. J. Mater. Sci. 31, 11204–11210 (2020)

    CAS  Google Scholar 

  21. G. Sharma, R. Awasthi, K. Chandra, A facile route to produce Fe–Al intermetallic coatings by laser surface alloying. Intermetallics 18, 2124–2127 (2010)

    Article  CAS  Google Scholar 

  22. X. Luo, J. Cao, G. Meng, Y. Zhou, H. **e, Long-range-ordered Fe3Al with excellent electromagnetic wave absorption. J. Mater. Sci. 31, 15608–15615 (2020)

    CAS  Google Scholar 

  23. X. Luo, K. Zhang, Y. Zhou, H. Wu, H. **e, In situ construction of Fe3Al@Al2O3 core-shell particles with excellent electromagnetic absorption. J. Colloid Interface Sci. 611, 306–316 (2022)

    Article  CAS  Google Scholar 

  24. C. Shen, X. Hua, F. Li, Y. Zhang, L. Wang, Y. Ding, B. Dong, Z. Pan, H. Li, Y. Zhu, Modification and characterization of the Al concentration induced precipitate in the Fe3Al-based iron aluminide fabricated using the wire-arc additive manufacturing process. Mater. Charact. 178, 111270 (2021)

    Article  CAS  Google Scholar 

  25. M. Bamdad, M.Y. Ghotbi, A new approach to the synthesis of nanostructured Fe3Al alloy and aluminum doped iron oxide material. Adv. Powder Technol. 23, 839–844 (2012)

    Article  CAS  Google Scholar 

  26. Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci. Rep. 3, 1455 (2013)

    Article  CAS  Google Scholar 

  27. Z. Ma, M. Yue, H. Liu, Z. Yin, K. Wei, H. Guan, H. Lin, M. Shen, S. An, Q. Wu, S. Sun, Stabilizing hard magnetic SmCo5 nanoparticles by N-doped graphitic carbon layer. J. Am. Chem. Soc. 142, 8440–8446 (2020)

    Article  CAS  Google Scholar 

  28. Y.-H. Xu, Q. Jiang, K. Li, Z.-H. Ma, Chemically synthesizing exchange-coupled SmCo5/Sm2Co17 nanocomposites. Rare Met. 40, 575–581 (2021)

    Article  CAS  Google Scholar 

  29. G.P. Das, B.K. Rao, P. Jena, S.C. Deevi, Electronic structure of substoichiometric Fe-Al intermetallics. Phys. Rev. B 66, 184203 (2002)

    Article  CAS  Google Scholar 

  30. A. Taylor, R.M. Jones, Constitution and magnetic properties of iron-rich iron-aluminum alloys. J. Phys. Chem. Solids 6, 16–37 (1958)

    Article  CAS  Google Scholar 

  31. R. Jaiswal, K. Agarwal, V. Pratap, A. Soni, S. Kumar, K. Mukhopadhyay, N. Eswara Prasad, Microwave-assisted preparation of magnetic ternary core-shell nanofiller (CoFe2O4/rGO/SiO2) and their epoxy nanocomposite for microwave absorption properties. Mater. Sci. Eng. B 262, 114711 (2020)

    Article  CAS  Google Scholar 

  32. F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018)

    Article  CAS  Google Scholar 

  33. B. Fan, N. Li, B. Dai, S. Shang, L. Guan, B. Zhao, X. Wang, Z. Bai, R. Zhang, Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Adv. Powder Technol. 31, 808–815 (2020)

    Article  CAS  Google Scholar 

  34. Y. Yang, L. **a, T. Zhang, B. Shi, L. Huang, B. Zhong, X. Zhang, H. Wang, J. Zhang, G. Wen, Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352, 510–518 (2018)

    Article  CAS  Google Scholar 

  35. Q. Sun, J. Shi, L. Wu, F. Wu, A. **e, Ni@Carbon nanocomposites with hierarchical three-dimensional network for electromagnetic waves absorption. Ceram. Int. 47, 27577–27585 (2021)

    Article  CAS  Google Scholar 

  36. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4, 9738–9749 (2016)

    Article  CAS  Google Scholar 

  37. X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang, X. Liang, Q. Zhou, H. Liu, S. Cui, Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio. ACS Sustain. Chem. Eng. 7, 2774–2783 (2019)

    Article  CAS  Google Scholar 

  38. C. Ge, L. Wang, G. Liu, T. Wang, Enhanced electromagnetic properties of carbon nanotubes and SiO2-coated carbonyl iron microwave absorber. J. Alloys Compd. 767, 173–180 (2018)

    Article  CAS  Google Scholar 

  39. G. Tong, W. Wu, J. Guan, J. Wang, J. Ma, J. Yuan, S. Wang, Solution synthesis and novel magnetic properties of ball-chain iron nanofibers. J. Mater. Res. 26, 2590–2598 (2011)

    Article  CAS  Google Scholar 

  40. X. Ningyan, X. Guozhi, G. **n, Y. Lijun, Y. Li, X. Chang, C. **g, Absorbing properties of melt spun FeSi alloy with the addition of Co in 5G band. J. Mater. Sci. 30, 18065–18069 (2019)

    Google Scholar 

  41. W. Li, J. Lv, X. Zhou, J. Zheng, Y. Ying, L. Qiao, J. Yu, S. Che, Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites. J. Magn. Magn. Mater. 426, 504–509 (2017)

    Article  CAS  Google Scholar 

  42. H. Gong, S. Tan, J. Zheng, K. Peng, Y. Zhang, Y. Hu, S. Duan, G. Xu, Enhanced microwave absorption properties of flake-shaped FeCo/BaFe12O19 composites. Ceram. Int. 47, 12389–12396 (2021)

    Article  CAS  Google Scholar 

  43. S.-G. Zhang, H.-X. Zhu, J.-J. Tian, D.-A. Pan, B. Liu, Y.-T. Kang, Electromagnetic and microwave absorbing properties of FeCoB powder composites. Rare Met. 32, 402–407 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 52005384 and 51871173), the fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology (No. SKLAB02019003), the Natural Science Basic Research Program of Shaanxi (No. 2020JQ-909), and the Scientific Research Program Funded by the Shaanxi Provincial Education Department (20JK0693).

Author information

Authors and Affiliations

Authors

Contributions

KZ involved in data curation, formal analysis, investigation, and writing—original draft preparation. XL contributed to writing—review and editing, supervision, project administration, and funding acquisition. HX participated in resources, supervision, writing—review and editing, and funding acquisition.

Corresponding authors

Correspondence to **xi Luo or Hui **e.

Ethics declarations

Conflict of interest

All the authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Luo, X. & **e, H. Tuning the Al content for flake Fe3Al powder to achieve wideband electromagnetic wave absorption. J Mater Sci: Mater Electron 33, 13290–13302 (2022). https://doi.org/10.1007/s10854-022-08268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08268-9

Navigation