Log in

Enhanced breakdown strength of ferroelectric–dielectric multilayered thin films by blocking oxygen vacancies through linear dielectric layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, to study the influence of heterogeneous interface on electrical performance and energy storage performance, the A-doped (Ba0.85Sr0.15TiO3) film was prepared on the platinum substrate by the Sol–Gel method, and a liner dielectric strontium titanate layer is inserted into different positions of the film. The linear dielectric layer (strontium titanate, SrTiO3) can effectively block oxygen vacancies from moving towards the electrode, the experimental results show that the insertion of the liner dielectric layer notably improves insulation property. As the breakdown field strength markedly increased, the energy storage density improved as a whole. The film of Pt/ Ba0.85Sr0.15TiO3/SrTiO3 structure displays the best performance, showing energy storage efficiency is 59.1% and the energy storage density is 44.1 J cm−3 under 3560.3 kV cm−1. In addition, the film capacitor of this structure can work stably in the temperature range of 0~100 °C. The results have provided an innovative way which can be used to selection of proper architecture of high storage efficiency capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. S. Siddiqui, D.-I. Kim, L.T. Duy, M.T. Nguyen, S. Muhammad, W.-S. Yoon, N.-E. Lee, Nano Energy 15, 177–185 (2015)

    Article  CAS  Google Scholar 

  2. C. Liu, X. Yan, F. Hu, G. Gao, G. Wu, X. Yang, Adv Mater. 30, 1705713 (2018)

    Article  Google Scholar 

  3. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, G.L. Brennecka, J. Am. Ceram. Soc. 96, 2699–2702 (2013)

    Article  CAS  Google Scholar 

  4. Z. Pan, L. Yao, J. Zhai, K. Yang, B. Shen, H. Wang, ACS Sustain. Chem. Eng. 5, 4707–4717 (2017)

    Article  CAS  Google Scholar 

  5. P.P. Hu, N. Liu, K.Y. Wu, L.Y. Zhai, B.P. **e, B. Sun, W.J. Duan, W.H. Zhang, J.X. Chen, Inorg Chem. 57, 8382–8389 (2018)

    Article  CAS  Google Scholar 

  6. E.J. Matthews, M. Kristiansen, A.A. Neuber, IEEE Trans. Plasma Sci. 38, 500–508 (2010)

    Article  CAS  Google Scholar 

  7. T.V.K. Prateek, R.K. Gupta, Chem Rev. 116, 4260–4317 (2016)

    Article  CAS  Google Scholar 

  8. F. Gang, H. Yan, C. Ma, L. Jiang, Y. Gu, Z. Liu, L. Zhao, X. Wang, J. Zhang, X. Sun, Chem Commun (Camb). 55, 12412 (2019)

    Article  CAS  Google Scholar 

  9. Y. Zhao, X. Hao, M. Li, J. Alloys. Compd. 601, 112–115 (2014)

    Article  CAS  Google Scholar 

  10. H. Pan, F. Li, Y. Liu, Q.H. Zhang, M. Wang, S. Lan, Y.P. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S.J. Zhang, L.Q. Chen, Y.H. Lin, C.W. Nan, Science 365, 578–582 (2019)

    Article  CAS  Google Scholar 

  11. X. Zhu, P. Shi, X. Lou, Y. Gao, X. Guo, H. Sun, Q. Liu, Z. Ren, J. Eur. Ceram. Soc. 40, 5475–5482 (2020)

    Article  CAS  Google Scholar 

  12. H. Zhu, M. Liu, Y. Zhang, Z. Yu, J. Ouyang, W. Pan, Acta Mater. 122, 252–258 (2017)

    Article  CAS  Google Scholar 

  13. Z. Pan, J. Zhai, B. Shen, J. Mater. Chem. A 5, 15217–15226 (2017)

    Article  CAS  Google Scholar 

  14. B. Ma, D.-K. Kwon, M. Narayanan, U. Balachandran, J. Mater. Res. 24, 2993–2996 (2011)

    Article  Google Scholar 

  15. B.B. Yang, M.Y. Guo, L.H. **, X.W. Tang, R.H. Wei, L. Hu, J. Yang, W.H. Song, J.M. Dai, X.J. Lou, X.B. Zhu, Y.P. Sun, Appl. Phys. Lett. 112, 14 (2018)

    Google Scholar 

  16. B. Peng, Z. **e, Z. Yue, L. Li, Appl. Phys. Lett. 105, 15 (2014)

    Google Scholar 

  17. J. Mayersky, A. Hilton, S. Pacley, R. Jha, MRS Commun. 11, 288–294 (2021)

    Article  CAS  Google Scholar 

  18. Y. Wang, X. Liu, H. Sun, H. Sui, C. Yan, J. Mater. Sci. 32, 2193–2199 (2021)

    CAS  Google Scholar 

  19. P. Jain, E.J. Rymaszewski, IEEE Trans. Adv. Packag. 25, 454–458 (2002)

    Article  CAS  Google Scholar 

  20. Y. Shen, Y. Hu, W. Chen, J. Wang, Y. Guan, J. Du, X. Zhang, J. Ma, M. Li, Y. Lin, L.Q. Chen, C.W. Nan, Nano Energy 18, 176–186 (2015)

    Article  CAS  Google Scholar 

  21. Y. Hu, Q. **e, R. Liang, X. Zhao, Z. Zhou, X. Dong, F. Wang, Y. Tang, N. Liu, X. Liu, AIP Adv. 9, 10 (2019)

    Google Scholar 

  22. X. Chen, Y. Zhang, B. **e, W. Wang, M. Ding, P. Yu, J Alloys Compd. 831, 85 (2020)

    Google Scholar 

  23. J.L. Lai, X.G. Tang, C.B. Ma, R. Li, Q.X. Liu, Y.P. Jiang, Integr. Ferroelectr. 139, 26–31 (2012)

    Article  CAS  Google Scholar 

  24. B. Song, K. Zhu, H. Yan, L. Xu, B. Shen, J. Zhai, J Mater. Chemy C 9, 4652–4660 (2021)

    Article  CAS  Google Scholar 

  25. W. Hu, C. Yang, W. Zhang, G. Liu, D. Dong, J. Sol-Gel. Sci. Technol. 39, 293–298 (2006)

    Article  CAS  Google Scholar 

  26. K.H. Yoon, J.-H. Sohn, B.D. Lee, D.H. Kang, Appl. Phys. Lett. 81, 5012–5014 (2002)

    Article  CAS  Google Scholar 

  27. H. Yang, K. Tao, B. Chen, X. Qiu, B. Xu, B. Zhao, Appl. Phys. Lett. 81, 4817–4819 (2002)

    Article  CAS  Google Scholar 

  28. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 495 (2005)

    Google Scholar 

  29. R. Meyer, R. Liedtke, R. Waser, Appl. Physi. Lett. 86, 11 (2005)

    Google Scholar 

  30. Q. Fan, M. Liu, C. Ma, L. Wang, S. Ren, L. Lu, X. Lou, C.-L. Jia, Nano Energy 51, 539–545 (2018)

    Article  CAS  Google Scholar 

  31. X.-Y. Zhang, Q. Song, F. Xu, S. Sheng, P. Wang, C.K. Ong, J. Phys. D 43, 099802–099802 (2010)

    Article  Google Scholar 

  32. C. Ren, C. Tan, L. Gong, M. Tang, M. Liao, Y. Tang, X. Zhong, H. Guo, J. Wang, Appl. Surf. Sci. 458, 540–545 (2018)

    Article  CAS  Google Scholar 

  33. B. Song, S. Wu, F. Li, P. Chen, B. Shen, J. Zhai, J. Mater. Chem C 7, 10891–10900 (2019)

    Article  CAS  Google Scholar 

  34. T. Zhang, W. Li, Y. Zhao, Y. Yu, W. Fei, Adv. Funct. Mater. 28, 15 (2018)

    Google Scholar 

  35. Y.L. Zhang, W.L. Li, W.P. Cao, T.D. Zhang, T.R.G.L. Bai, Y. Yu, Y.F. Hou, Y. Feng, W.D. Fei, Ceram. Int. 42, 14788–14792 (2016)

    Article  CAS  Google Scholar 

  36. Z. Liang, M. Liu, C. Ma, L. Shen, L. Lu, C.-L. Jia, J. Mater. Chem. A 6, 12291–12297 (2018)

    Article  CAS  Google Scholar 

  37. Z. Sun, C. Ma, X. Wang, M. Liu, L. Lu, M. Wu, X. Lou, H. Wang, C.L. Jia, ACS APPLIED MATERIALS & INTERFACES. 9th Asian Meeting on Electroceramics, 17096 (2017)

  38. K.D. Kim, Y.H. Lee, T. Gwon, Y.J. Kim, H.J. Kim, T. Moon, S.D. Hyun, H.W. Park, M.H. Park, C.S. Hwang, Nano Energy 39, 390–399 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1806221, 51672198), Innovation and Development Project of Zibo City (2017CX01A022), Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3, 2018ZCQZB01, 2019ZCQZB03), Central Guiding Local Science and Technology Development Special Funds (Grant No. 2060503), and Key Research & Design Program of Shandong Province (2019GGX102011).

Author information

Authors and Affiliations

Authors

Contributions

CY: Conceptualization, Methodology, Investigation, Writing—original draft. HS: Supervision, funding acquisition, writing—review & editing, Validation, Writing—review & editing. XH: Supervision, Writing—review & editing. XL: Validation, Writing—review & editing. CY: Investigation, Data curation, Visualization.

Corresponding author

Correspondence to Huajun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Sun, H., Huang, X. et al. Enhanced breakdown strength of ferroelectric–dielectric multilayered thin films by blocking oxygen vacancies through linear dielectric layer. J Mater Sci: Mater Electron 33, 11236–11245 (2022). https://doi.org/10.1007/s10854-022-08099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08099-8

Navigation