Log in

Spark plasma sintering and electric conductivity of anatase TiO2 nanoceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigated the densification and electric conductivity in uncommon ultra-fine-grained anatase TiO2 nanoceramics. These materials were prepared by Spark Plasma Sintering (SPS) at 850 °C and exhibited a relative density of 95% and mean grain size of 57 nm. The structural TiO2 anatase phase and microstructural characteristics were determined by XRD and SEM analyses, respectively. A main densification mechanism was proposed based on the grain size–relative density relationship, where an effective pinning effect of nanopores on agglomerates was suggested. Measurements of electric impedance and modulus revealed the influence of SPS conditions on electrical properties. The conductivity relaxation and activation energy in such dense anatase TiO2 nanoceramics were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available with the authors on demand.

Code availability

Not applicable.

References

  1. J. Lademann, H.J. Weigmann, H. Schafer, G. Muller, W.S. Sterry, Pharmacol. Appl. 13, 258–264 (2000)

    CAS  Google Scholar 

  2. M. Gratzel, Nature 414, 338–344 (2001)

    Article  CAS  Google Scholar 

  3. M.K. Nowotny, J. Nowotny, Solid state chemistry and photocatalysis of titanium dioxide ïn Solid State Phenomena, vol. 162 (Trans Tech Publications, Switzerland, 2010).

  4. Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, P. Wang, Chem. Rev. 114, 10095–10130 (2014)

    Article  CAS  Google Scholar 

  5. J. Bai, B. Zhou, Chem. Rev. 114, 10131–10176 (2014)

    Article  CAS  Google Scholar 

  6. L.V. Bora, R.K. Mewada, Renew. Sustain. Energy. Rev. 76, 1393–1421 (2017)

    Article  CAS  Google Scholar 

  7. H.Z. Zhang, J.F. Banfield, J. Mater. Chem. 8, 2073–2076 (1998)

    Article  CAS  Google Scholar 

  8. R.G. Silva, M.N. Nadagouda, C.L. Patterson, S. Panguluri, T.P. Luxton, E. Sahle-Demessie, C.A. Impellitteri, Environ. Sci. Nano 1, 284–292 (2014)

    Article  CAS  Google Scholar 

  9. F. Maglia, M. Dapiaggi, I. Tredici, U. Anselmi-Tamburini, Nanosci. Nanotechnol. Lett. 4, 205–208 (2012)

    Article  CAS  Google Scholar 

  10. C. Hu, F. Li, D. Qu, Q. Wang, R. **e, H. Zhang, H. Zhang, S. Peng, Y. Bao, Y. Zhou, in Advances in Ceramic Matrix Composites, ed. by I.M. Low (Woodhead, 2014) Chapter 8, pp 164–189.

  11. R.M. German, in Sintering: from Empirical Observations to Scientific Principles (Elsevier Publisher, 2014) Chapter 10, pp. 305–354.

  12. I.G. Tredici, F. Maglia, C. Ferrara, P. Mustarelli, U. Anselmi-Tamburini, Adv. Funct. Mater. 24, 5137–5146 (2014)

    Article  CAS  Google Scholar 

  13. D.B. Kumar, B.S. Babu, K.M.A. Jerrin, N. Joseph, A. Jiss, I.O.P. Conf, Ser. 993, 012004 (2020)

    CAS  Google Scholar 

  14. Y. Regaieg, G. Delaizir, F. Herbst, L. Sicard, J. Monnier, D. Montero, B. Villeroy, S. Ammar, A. Cheikhrouhou, C. Godart, M. Koubaa, Mater. Lett. 80, 195–198 (2012)

    Article  CAS  Google Scholar 

  15. D. Yang, T. Yang, Q. Sun, Y. Chen, G.I. Lampronti, J. Alloys Compd 728, 337–342 (2017)

    Article  CAS  Google Scholar 

  16. Z. Li, Y. Cho, X. Li, A. Aimi, Y. Inaguma, J.A. Alonso, M.T. Fernandez-Diaz, J. Yan, M.C. Downer, G. Henkelman, J.B. Goodenough, J. Zhou, J. Am. Chem. Soc. 140, 2214–2220 (2018)

    Article  CAS  Google Scholar 

  17. M. Ahmad, Nanoscale Res. Lett. 10, 58 (2015)

    Article  Google Scholar 

  18. G. Bernard, C. Guizard, S. Surble, G. Baldinozzi, A. Addad, Acta Mater. 56, 4658–4672 (2008)

    Article  Google Scholar 

  19. V. Shukla, A. Kumar, I. Labbaveettil, K. Balani, A. Subramaniam, S. Omar, J. Am. Ceram. Soc. 100, 204–214 (2017)

    Article  CAS  Google Scholar 

  20. Y.I. Lee, J.H. Lee, S.H. Hong, D.Y. Kim, Mater. Res. Bull. 38, 925–931 (2003)

    Article  CAS  Google Scholar 

  21. P. Angerer, L.G. Yu, K.A. Khor, G. Krumpel, Mater. Sci. Eng. A 381, 16–19 (2004)

    Article  Google Scholar 

  22. J.H. Noh, H.S. Jung, J.K. Lee, J.R. Kim, K.S. Hong, J. Eur. Ceram. Soc. 27, 2937–2940 (2007)

    Article  CAS  Google Scholar 

  23. P. Knauth, H.L. Tuller, J. Appl. Phys. 85, 897–901 (1999)

    Article  CAS  Google Scholar 

  24. A. Weibel, R. Bouchet, P. Knauth, Solid State Ion. 177, 229–236 (2006)

    Article  CAS  Google Scholar 

  25. N. Masahashi, Mater. Sci. Eng. A 452(453), 721–726 (2007)

    Article  Google Scholar 

  26. J. Nowotny, C.C. Sorrell, T. Bak, and L.R. Sheppard, in Materials for energy conversion devices ed. by C.C. Sorrell, S. Sugihara, and J. Nowotny (Woodhead Publishing, Cambridge, 2005) Chapter 4.

  27. J. Nowotny, T. Bak, T. Burg, M.K. Nowotny, L.R. Sheppard, J. Phys. Chem. C 111, 9769–9778 (2007)

    Article  CAS  Google Scholar 

  28. T. Dittrich, J. Weidmann, F. Koch, I. Uhlendorf, I. Lauermann, Appl. Phys. Lett. 75, 3980–3982 (1999)

    Article  CAS  Google Scholar 

  29. K. Pomoni, M.V. Sofianou, T. Georgakopoulos, N. Boukos, C. Trapalis, J. Alloys Compd. 548, 194–200 (2013)

    Article  CAS  Google Scholar 

  30. R. Alvarez-Roca, E.R. Leite, J. Am. Ceram. Soc. 96, 96–102 (2013)

    Article  Google Scholar 

  31. W.J. DoNascimento, R.C. DaSilva, J.A. Eiras, Integr. Ferroelectr. 174, 71–80 (2016)

    Article  CAS  Google Scholar 

  32. J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109–111 (1972)

    Article  CAS  Google Scholar 

  33. F.F. Lange, J. Am. Ceram. Soc. 72, 3–15 (1989)

    Article  CAS  Google Scholar 

  34. J.G. Li, X. Sun, Acta Mater. 48, 3103–3112 (2000)

    Article  CAS  Google Scholar 

  35. Y. Amana, V. Garnier, E. Djurado, J. Eur. Ceram. Soc. 29, 3363–3370 (2009)

    Article  Google Scholar 

  36. L.C. Lim, P.M. Wong, M.A. Jan, Acta Mater. 48, 2263–2270 (2000)

    Article  CAS  Google Scholar 

  37. C. Nivot, F. Valdivieso, P. Goeuriot, J. Eur. Ceram. Soc. 26, 9–15 (2006)

    Article  CAS  Google Scholar 

  38. G. Bernard-Granger, C. Guizard, Acta Mater. 56, 6273–6282 (2008)

    Article  CAS  Google Scholar 

  39. R. Chaim, M. Levin, A. Shlayer, C. Estournès, Adv. Appl. Ceram. 107, 159–169 (2008)

    Article  CAS  Google Scholar 

  40. G.S.M. Theunissen, A.J.A. Winnubst, A.J. Burggraaf, J. Eur. Ceram. Soc. 11, 315–324 (1993)

    Article  CAS  Google Scholar 

  41. Z.Z. Fang, H. Wang, Int. Mater. Rev. 53, 326–352 (2008)

    Article  CAS  Google Scholar 

  42. M.J. Mayo, Int. Mater. Rev. 41, 85–115 (1996)

    Article  CAS  Google Scholar 

  43. R. Alvarez-Roca, E.R. Leite, E. Longo, Proc. Appl. Ceram. 11, 93–99 (2017)

    Article  Google Scholar 

  44. V.V. Srdic, M. Winterer, H. Hahn, J. Am. Ceram. Soc. 83, 729–736 (2000)

    Article  CAS  Google Scholar 

  45. J. Zhao, M.P. Harmer, J. Am. Ceram. Soc. 71, 113–120 (1988)

    Article  CAS  Google Scholar 

  46. G. Bernard-Granger, C. Guizard, L. San-Miguel, J. Am. Ceram. Soc. 90, 2698–2702 (2007)

    Article  CAS  Google Scholar 

  47. B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, Y. Kagawa, Acta Mater. 57, 1319–1326 (2009)

    Article  CAS  Google Scholar 

  48. R. Marder, R. Chaim, C. Estournes, Mater. Sci. Eng. A 527, 1577–1585 (2010)

    Article  Google Scholar 

  49. R. Gerhardt, J. Phys. Chem. Solids 55, 1491–1506 (1994)

    Article  CAS  Google Scholar 

  50. J.R. MacDonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  51. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850–3856 (1989)

    Article  CAS  Google Scholar 

  52. F.S. Fonseca, R. Muccillo, Solid State Ion. 166, 157–165 (2004)

    Article  CAS  Google Scholar 

  53. C.A. Angell, Chem. Rev. 90, 523–542 (1990)

    Article  CAS  Google Scholar 

  54. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumdar, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    Article  Google Scholar 

  55. S. Sumi, P.P. Rao, M. Deepa, P. Koshy, J. Appl. Phys. 108, 063718 (2010)

    Article  Google Scholar 

  56. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)

    Article  CAS  Google Scholar 

  57. B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci. 16, 335–344 (2005)

    CAS  Google Scholar 

  58. C. Demetry, X. Shi, Solid State Ion. 118, 271–279 (1999)

    Article  CAS  Google Scholar 

  59. O.J. Durá, M.A.L. de la Torre, L. Vázquez, J. Chaboy, R. Boada, A. Rivera-Calzada, J. Santamaria, C. Leon, Phys. Rev. B 81, 184301 (2010)

    Article  Google Scholar 

  60. E.C.C. Souza, W.C. Chueh, W. Jung, E.N.S. Muccillo, S.M. Haile, J. Electrochem. Soc. 159, 127–135 (2012)

    Article  Google Scholar 

  61. D.K. Lee, H.I. Yoo, Solid State Ion. 177, 1–9 (2006)

    Article  CAS  Google Scholar 

  62. M.K. Nowotny, T. Bak, J. Nowotny, J. Phys. Chem. B 110, 16302–16308 (2006)

    Article  CAS  Google Scholar 

  63. Y.A. Zulueta, J.A. Dawson, Y. Leyet, F. Guerrero, J. Anglada-Rivera, M.T. Nguye, Phys. Status Solidi 253, 733–737 (2016)

    Article  CAS  Google Scholar 

  64. R.A. De Souza, V. Metlenko, D. Park, T.E. Weirich, Phys. Rev. B 85, 174109 (2012)

    Article  Google Scholar 

  65. G. Gregori, R. Merkle, J. Maier, Prog. Mater. Sci. 89, 252–305 (2017)

    Article  CAS  Google Scholar 

  66. S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002)

    Article  Google Scholar 

  67. S. Sen, P. Pramanik, R.N.P. Choudhary, Appl. Phys. A 82, 549–557 (2006)

    Article  CAS  Google Scholar 

  68. K. Kathayat, A. Panigrahi, A. Pandey, S. Kar, Mater. Sci. Appl. 3, 390–397 (2012)

    CAS  Google Scholar 

  69. S. Mudenda, G.M. Kale, J. Mater. Chem. A 3, 12268–12275 (2015)

    Article  CAS  Google Scholar 

  70. P.K. Bajpai, K.N. Singh, Physica B 406, 1226–1232 (2011)

    Article  CAS  Google Scholar 

  71. K.N. Singh, R. Mishra, P.K. Bajpai, A.K. Srivastava, Int. J. Adv. Res. 1, 1–14 (2013)

    Google Scholar 

  72. M. Haj Lakhdar, T. Larbi, B. Ouni, M. Amlouk, Mater. Sci. Semicond. Proc. 40, 596–601 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. D. Seiti (from the Physics Department at the Federal University of São Carlos, UFSCar) for the SPS measurements, and Dra. A.C.M. Rodrigues (from the Vitreous Materials Laboratory, LAMAV, at the Federal University of São Carlos, UFSCar) for providing the IS measurements.

Funding

For the material/financial support, the authors would like to thank the Brazilian institutions and funding agencies: CAPES, CNPq, and FAPESP (Process 2017/19548-7).

Author information

Authors and Affiliations

Authors

Contributions

The recognizing individual author contributions to the paper are the following manner: RAR: Investigation, data curation and writing-original draft preparation. FAL: Methodology, writing—reviewing, validation, and editing. JAE: Conceptualization, methodology, validation, and supervision.

Corresponding author

Correspondence to Roman Alvarez Roca.

Ethics declarations

Conflict of interest

The authors declare that they are unaware of any competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roca, R.A., Badillo, F.A.L. & Eiras, J.A. Spark plasma sintering and electric conductivity of anatase TiO2 nanoceramics. J Mater Sci: Mater Electron 33, 4375–4387 (2022). https://doi.org/10.1007/s10854-021-07630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07630-7

Navigation