Log in

Time-dependent resonating plasma treatment of carbon nanotubes for enhancing the electron field emission properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vertically aligned carbon nanotubes having the advanced atomic configuration, structural properties, and electronic conductivity, which makes the CNTs as an eminent candidate for the electron field emission. In the present work, we have altered the morphology of the vertically aligned - CNT field emitters for improving the electron field emission parameters and temporal stability. The structural tuning and alteration of CNT field emitters was performed in the electron cyclotron resonance based chemical vapor deposition system via generating a dense resonating plasma of \({\text{N}\text{H}}_{3}\) gas. The as-synthesized pristine and resonating plasma treated VA-CNT field emitters were characterized by field emission scanning electron microscope for study the morphology, and Raman spectroscopy for the analysis of quality and structural defects. The horn type protrusions were formed after resonating plasma treatment. The electron field emission properties were drastically influenced by the time-based resonating plasma treatment. In terms of the reduction in the turn-on \(\left({E}_{to}\right)\) and threshold \(\left({E}_{th}\right)\) electric fields, improvement in the emission current density \(\left(J\right)\), increment in the conventional characteristics field enhancement factor \(\left(\gamma \right)\), and excellent temporal emission stability due to the incorporation of nitrogen species in the graphitic sheet of nanotubes, reduction in the screening effect, edge effect enhanced, and formation of defects in the graphitic sheet of VA-CNT. The calculated scaled barrier field values belong in the acceptable range and hence, orthodox emission hypothesis test qualified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)

    CAS  Google Scholar 

  2. W.A. De Heer, A. Chatelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179 (1995)

    Google Scholar 

  3. F. Giubileo, A. Di Bartolomeo, L. Iemmo, G. Luongo, F. Urban, Field emission from carbon nanostructures. Appl. Sci. 8, 526 (2018)

    Google Scholar 

  4. J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, N., Carbon nanotube films as electron field emitters. Carbon 40, 1715 (2002)

    CAS  Google Scholar 

  5. W. Lei, Z. Zhu, C. Liu, X. Zhang, B. Wang, A. Nathan, High-current field-emission of carbon nanotubes and its application as a fast-imaging X-ray source. Carbon 94, 687 (2015)

    CAS  Google Scholar 

  6. M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, E. Hernandez, Electronic, thermal and mechanical properties of carbon nanotubes. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 362, 2065 (2004)

  7. H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523 (1996)

    CAS  Google Scholar 

  8. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Single-electron transport in ropes of carbon nanotubes. Science 275, 1922 (1997)

    CAS  Google Scholar 

  9. J. Hone, M. Whitney, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103, 2498 (1999)

    CAS  Google Scholar 

  10. M. Yu, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000)

    CAS  Google Scholar 

  11. S. Sridhar, L. Ge, C.S. Tiwary, A.C. Hart, S. Ozden, K. Kalaga, S. Lei, S.V. Sridhar, R.K. Sinha, H. Harsh, K. Kordas, Enhanced field emission properties from CNT arrays synthesized on inconel superalloy. ACS Appl. Mater. Interfaces 6, 1986 (2014)

    CAS  Google Scholar 

  12. W. Lei, Z. Zhu, C. Liu, X. Zhang, B. Wang, A. Nathan, High-current field-emission of carbon nanotubes and its application as a fast-imaging X-ray source. Carbon 94, 687 (2015)

    CAS  Google Scholar 

  13. J.W. Jeong, J.W. Kim, J.T. Kang, S. Choi, S. Ahn, Y.H. Song, A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons. Nanotechnology 24, 085201 (2013)

    Google Scholar 

  14. H.S. Kim, E.J.D. Castro, C.H. Lee, Optimum design for the carbon nanotube based micro-focus X-ray tube. Vacuum 111, 142 (2015)

    CAS  Google Scholar 

  15. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes--the route toward applications. Science 297, 787 (2002)

    CAS  Google Scholar 

  16. W.I. Milne, K.B.K. Teo, E. Minoux, O. Groening, L. Gangloff, L. Hudanski, J.P. Schnell, D. Dieumegard, F. Peauger, I.Y.Y. Bu, M.S. Bell, Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24, 345 (2006)

    CAS  Google Scholar 

  17. X. Chen, T. Jiang, Z. Sun, W. Ou-Yang, Field emission device driven by self powered contact-electrification: Simulation and experimental analysis, Appl. Phys. Lett. 107, (2015).

  18. J. Xu, P. Xu, P. Guo, W. Ou-Yang, Y. Chen, T. Feng, X. Piao, M. Wang, Z. Sun, All carbon nanotube based flexible field emission devices prepared through a film transfer method. RSC Adv. 5, 21755 (2015).

    CAS  Google Scholar 

  19. Y. Saito, S. Uemura, S., Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169 (2000)

    CAS  Google Scholar 

  20. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Appl. Phys. 97, 3 (2005)

    Google Scholar 

  21. P.H. Lin, C.L. Sie, C.A. Chen, H.A. Chang, Y.T. Shih, H.Y. Chang, W.J. Su, K.Y. Lee, Field emission characteristics of the structure of vertically aligned carbon nanotube bundles. Nanoscale Res. Lett. 10, 1 (2015)

    Google Scholar 

  22. V. Semet, V.T. Binh, P. Vincent, D. Guillot, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, P. Legagneux, D. Pribat, Field electron emission from individual carbon nanotubes of a vertically aligned array. Appl. Phys. Lett. 81, 343 (2002)

    CAS  Google Scholar 

  23. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550 (1995)

    CAS  Google Scholar 

  24. J.L. Silan, D.L. Niemann, B.P. Ribaya, M. Rahman, M. Meyyappan, C.V. Nguyen, Carbon nanotube pillar arrays for achieving high emission current densities. Appl. Phys. Lett. 95, 133111 (2009)

    Google Scholar 

  25. B.K. Gupta, G. Kedawat, A.K. Gangwar, K. Nagpal, P.K. Kashyap, S. Srivastava, S. Singh, P. Kumar, S.R. Suryawanshi, D.M. Seo, P. Tripathi, High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures. AIP Adv. 8, 015117 (2018)

    Google Scholar 

  26. A. Thapa, K.L. Jungjohann, X. Wang, W. Li, Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification. J. Mater. Sci. 55, 2101 (2020)

    CAS  Google Scholar 

  27. A. Thapa, J. Guo, K.L. Jungjohann, X. Wang, W. Li, Density control of vertically aligned carbon nanotubes and its effect on field emission properties. Mater. Today Commun. 22, 100761 (2020)

    CAS  Google Scholar 

  28. M. Kumari, S. Gautam, P.V. Shah, S. Pal, U.S. Ojha, A. Kumar et al., Improving the field emission of carbon nanotubes by lanthanum-hexaboride nano-particles decoration. Appl. Phys. Lett. 101, 123113 (2012)

    Google Scholar 

  29. S. Sridhar, C. Tiwary, S. Vinod, J.J. Taha-Tijerina, S. Sridhar, K. Kalaga, B. Sirota, A.H. Hart, S. Ozden, R.K. Sinha, R. Vajtai, Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano 8, 7763 (2014)

    CAS  Google Scholar 

  30. L.A. Gautier, V. Le Borgne, N. Delegan, R. Pandiyan, M.A. El, Khakani, Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process. Nanotechnology 26, 045706 (2015)

    CAS  Google Scholar 

  31. Y.W. Son, S. Han, J. Ihm, Electronic structure and the field emission mechanism of MgO-coated carbon nanotubes. New J. Phys. 5, 152 (2003) 151(

    Google Scholar 

  32. M.K. Tabatabaei, H.G. Fard, J. Koohsorkhi, Low-temperature preparation of a carbon nanotube–ZnO hybrid on glass substrate for field emission applications. Nano 10, 1550040 (2015)

    Google Scholar 

  33. J. Svensson, N.M. Bulgakova, O.A. Nerushev, E.E. Campbell, Field emission induced deformations in SiO2 during CVD growth of carbon nanotubes. Physica Status Solidi (b) 243, 3524 (2006)

    CAS  Google Scholar 

  34. M.M.H. Raza, M. Sadiq, S. Khan, M. Sarvar, S. Parveen, S.M. Aalam, M. Zulfequar, S. Husain, J. Ali, Surface modification via silver nanoparticles attachment: An ex-situ approach for enhancing the electron field emission properties of CNT field emitters. Materials Today: Proceedings, (2021). https://doi.org/10.1016/j.matpr.2021.03.449

  35. A. Kumar, S. Husain, J. Ali, M. Husain, M. Husain, Field emission study of carbon nanotubes forest and array grown on Si using Fe as catalyst deposited by electro-chemical method. J. Nanosci. Nanotechnol. 12, 2829 (2012)

    CAS  Google Scholar 

  36. C.J. Shearer, A. Fahy, M. Barr, P.C. Dastoor, J.G. Shapter, Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon. Nanoscale Res. Lett. 7, 1 (2012)

    Google Scholar 

  37. K.S. Kim, J.H. Ryu, C.S. Lee, J. Jang, K.C. Park, Enhanced and stable electron emission of carbon nanotube emitter arrays by post-growth hydrofluoric acid treatment. J. Mater. Sci.: Mater. Electron. 20, 120 (2009). DOI:https://doi.org/10.1007/s10854-007-9463-6

    Article  CAS  Google Scholar 

  38. Y.D. Lim, Q. Kong, S. Wang, C.W. Tan, B.K. Tay, S. Aditya, Enhanced field emission properties of carbon nanotube films using densification technique. Appl. Surf. Sci. 477, 211 (2019). DOI:https://doi.org/10.1016/j.apsusc.2017.11.005

    Article  CAS  Google Scholar 

  39. K.Y. Wang, C.H. Chou, C.Y. Liao, Y.R. Li, H.C. Cheng, Densification effects of the carbon nanotube pillar array on field-emission properties. Jpn. J. Appl. Phys. 55, 06GF12 (2016). DOI:https://doi.org/10.7567/JJAP.55.06GF12

    Article  CAS  Google Scholar 

  40. K.Y. Wang, C.Y. Liao, H.C. Cheng, Field-emission characteristics of the densified carbon nanotube pillars array. ECS J. Solid State Sci. Technol. 5, M99 (2016). DOI:https://doi.org/10.1149/2.0301609jss

    Article  CAS  Google Scholar 

  41. J. Ali, A. Kumar, S. Husain, S. Parveen, R. Choithrani, M. Zulfequar, M. Husain, Enhancement of Field Emission Properties of Carbon Nanotubes by ECR-Plasma Treatment. J. Nanosci. (2014)

  42. A. Kumar, S. Parveen, S. Husain, J. Ali, M. Zulfequar, M. Harsh, Husain, Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system. J. Appl. Phys. 115, 084308 (2014)

    Google Scholar 

  43. B.B. Wang, Q.J. Cheng, X. Chen, K. Ostrikov, Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment. J. Alloy. Compd. 509, 9329 (2011)

    CAS  Google Scholar 

  44. P.M. Koinkar, D. Yonekura, R.I. Murakami, T. Moriga, M.A. More, Field electron emission characteristics of plasma treated carbon nanotubes. Mod. Phys. Lett. B 29, 1540030 (2015)

    Google Scholar 

  45. G. Chen, S. Neupane, W. Li, L. Chen, J. Zhang, An increase in the field emission from vertically aligned multiwalled carbon nanotubes caused by NH3 plasma treatment. Carbon 52, 468 (2013)

    CAS  Google Scholar 

  46. J.Y. Kim, T. Jeong, C.W. Baik, S.H. Park, I. Han, G.H. Kim, S. Yu, Field-emission performance and structural change mechanism of multiwalled carbon nanotubes by oxygen plasma treatment. Thin Solid Films 547, 202 (2013)

    CAS  Google Scholar 

  47. Y.W. Zhu, A.M. Moo, T. Yu, X.J. Xu, X.Y. Gao, Y.J. Liu, C.T. Lim, Z.X. Shen, C.K. Ong, A.T.S. Wee, J.T.L. Thong, Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires. Chem. Phys. Lett. 419, 458 (2006)

    CAS  Google Scholar 

  48. C.Y. Zhi, X.D. Bai, E.G. Wang, Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 81, 1690 (2002)

    CAS  Google Scholar 

  49. A. Gohel, K.C. Chin, Y.W. Zhu, C.H. Sow, A.T.S. Wee, Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes. Carbon 43, 2530 (2005)

    CAS  Google Scholar 

  50. S.F. Lee, Y.P. Chang, L.Y. Lee, Plasma treatment effects on surface morphology and field emission characteristics of carbon nanotubes. J. Mater. Sci.: Mater. Electron. 20, 851 (2009)

    CAS  Google Scholar 

  51. S.T. Lim, G.H. Kim, G.H. Jeong, Field emission characteristics of cone-shaped carbon-nanotube bundles fabricated using an oxygen plasma. J. Korean Phys. Soc. 61, 1083 (2012)

    CAS  Google Scholar 

  52. M.M.H. Raza, M. Sadiq, S. Khan, M. Zulfequar, M. Husain, S. Husain, J. Ali, A single step in-situ process for improvement in electron emission properties of surface-modified carbon nanotubes (CNTs): Titanium dioxide nanoparticles attachment. Diam. Relat. Mater. 110, 108139 (2020)

    CAS  Google Scholar 

  53. M.M.H. Raza, S. Khan, M. Sadiq, M. Zulfequar, M. Husain, J. Ali, Enhancement of Electron Emission Properties of Carbon Nanotubes by the Decoration with Low Work Function Metal Oxide Nanoparticles. J. Nanosci. Nanotechnol. 20, 6463 (2020)

    CAS  Google Scholar 

  54. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, do** and nonadiabatic effects. Solid State Commun. 143, 47 (2007). DOI:https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  55. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009). DOI:https://doi.org/10.1103/PhysRevB.79.205433

    Article  CAS  Google Scholar 

  56. R.G. Forbes, Development of a simple quantitative test for lack of field emission orthodoxy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469, 20130271(2013)

  57. R.G. Forbes, Simple good approximations for the special elliptic functions in standard Fowler-Nordheim tunneling theory for a Schottky-Nordheim barrier. Appl. Phys. Lett. 89, 113122 (2006)

    Google Scholar 

  58. R.G. Forbes, J.H. Deane, Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463, 2907(2007)

  59. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proceedings of the Royal Society of London. A. Series, Containing Papers of a Mathematical and Physical Character, 119, 173(1928)

  60. R.G. Forbes, Comments on the continuing widespread and unnecessary use of a defective emission equation in field emission related literature. J. Appl. Phys. 126, 210901 (2019)

    Google Scholar 

  61. R. Patra, S. Ghosh, H. Sharma, V.D. Vankar, High stability field emission from zinc oxide coated multiwalled carbon nanotube film. Adv. Mater. Lett. 4, 849 (2013)

    Google Scholar 

  62. J. Derakhshandeh, Y. Abdi, S. Mohajerzadeh, H. Hosseinzadegan, E.A. Soleimani, H. Radamson, Fabrication of 100 nm gate length MOSFET’s using a novel carbon nanotube-based nano-lithography. Mater. Sci. Eng: B 124, 354–358 (2005)

    Google Scholar 

  63. K. Tang, C. Yuan, Y. **ong, H. Hu, M. Wu. Inverse-opal-structured hybrids of N, S-codoped-carbon-confined Co9S8 nanoparticles as bifunctional oxygen electrocatalyst for on-chip all-solid-state rechargeable Zn-air batteries. Appl. Catal. B: Environ. 260, 118209 (2020)

  64. Z. Cao, H. Hu, M. Wu, K. Tang, T. Jiang, Planar all-solid-state rechargeable Zn–air batteries for compact wearable energy storage. J. Mater. Chem. A 7(29), 17581–17593 (2019)

    CAS  Google Scholar 

  65. Z.Q. Cao, M.Z. Wu, H.B. Hu, G.J. Liang, C.Y. Zhi. Monodisperse Co 9 S 8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn–air battery. NPG Asia Mater. 10(7), 670–684 (2018)

Download references

Acknowledgements

Author (J. Ali) thanks to University Grant Commission for providing financial assistance in the form of UGC-BSR Start-up Research Grant [Sanction No. F.30-359/2017 (BSR)]. FESEM was performed in the Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India. Raman spectroscopy was performed in the Central Instrumentation Facility, Jamia Millia Islamia, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Ali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M.M.H., Aalam, S.M., Sadiq, M. et al. Time-dependent resonating plasma treatment of carbon nanotubes for enhancing the electron field emission properties. J Mater Sci: Mater Electron 33, 1211–1227 (2022). https://doi.org/10.1007/s10854-021-07413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07413-0

Navigation