Log in

Investigation of surface scaling, optical and microwave dielectric studies of Bi0.5Na0.5TiO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we have investigated the optical and microwave dielectric properties of Bi0.5Na0.5TiO3 (BNT) thin films grown under different oxygen pressure (PO2) using the pulsed laser deposition technique. The X-ray diffraction measurements confirm the single phase of BNT and the secondary phase and a further reduction in the secondary phase and increase in the BNT phase with PO2, which signifies the close relationship between the crystal structure and oxygen content. The shift of Raman-active TO1, TO2, and TO3 modes towards higher wavelengths and increase in mode intensity with PO2 indicating the degree of the film of crystallinity. The local roughness (αloc) of all films obtained as ∼ 0.85 and the interface width (ω) and lateral correlation length (ξ) of films vary with PO2. Also, the films exhibit an increase in refractive index and reduction in the optical bandgap due to improvement in crystallinity and reduction in the oxygen vacancies. The microwave dielectric properties show that a strong PO2 depends on the higher dielectric constant (εr = 336) with lower loss (tanδ= 0.0093) at 5 GHz, which shows the potential applications in high-frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Sun, H. Wang, G. Liu, H. **e, C. Zhou, G. Chen, C. Yuan, J. Xu, J. Mater. Sci. Mater. Electron. 31, 5546 (2020)

    Article  CAS  Google Scholar 

  2. S. Takagi, A. Subedi, V.R. Cooper, D.J. Singh, Phys. Rev. B—Condens. Matter Mater. Phys. 82, 19 (2010)

    Article  Google Scholar 

  3. J.F. Scott, Science 315, 954 (2007)

    Article  CAS  Google Scholar 

  4. N.D. Co, L.V. Cuong, B.D. Tu, P.D. Thang, L.X. Dien, V.N. Hung, N.D. Quan, J. Sci. Adv. Mater. Devices 4(3), 370–375 (2019)

    Article  Google Scholar 

  5. M.S. Tsai, S.C. Sun, T.Y. Tseng, J. Appl. Phys. 82, 3482 (1997)

    Article  CAS  Google Scholar 

  6. Z. Kutnjak, R. Blinc, Y. Ishibashi, Phys. Rev. B—Condens. Matter Mater. Phys. 76, 104102 (2007)

    Article  Google Scholar 

  7. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  CAS  Google Scholar 

  8. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349 (2018)

    Article  CAS  Google Scholar 

  9. Q. Wang, C.R. Bowen, W. Lei, H. Zhang, B. **e, S. Qiu, M.Y. Li, S. Jiang, J. Mater. Chem. A 6, 5040 (2018)

    Article  CAS  Google Scholar 

  10. G. Gui Peng, D. Yi Zheng, C. Cheng, J. Zhang, H. Zhang, J. Alloys Compd. 693, 1250 (2017)

    Article  Google Scholar 

  11. A.M. Mazuera, P.S. Silva, A.D. Rodrigues, P.S. Pizani, Y. Romaguera-Barcelay, M. Venet, M. Algueró, Phys. Rev. B 94, 1 (2016)

    Article  Google Scholar 

  12. B. Dai, P. Zheng, W. Bai, F. Wen, L. Li, W. Wu, Z. Ying, L. Zheng, J. Eur. Ceram. Soc. 38, 4212 (2018)

    Article  CAS  Google Scholar 

  13. H. Bao, C. Zhou, D. Xue, J. Gao, X. Ren, J. Phys. D. Appl. Phys. 43, 465401 (2010)

    Article  Google Scholar 

  14. D. Shreiber, W. Zhou, G. Dang, M. Taysing-Lara, G. Metcalfe, E. Ngo, M. Ivill, S.G. Hirsch, M.W. Cole, Thin Solid Films 660, 282 (2018)

    Article  CAS  Google Scholar 

  15. X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91 (2004)

    Article  CAS  Google Scholar 

  16. S. Pattipaka, A.R. James, P. Dobbidi, J. Electron. Mater. 47, 3876 (2018)

    Article  CAS  Google Scholar 

  17. M. Peddigari, P. Dobbidi, AIP Adv. 5, 107129 (2015)

    Article  Google Scholar 

  18. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Fiz. Tverd. Tela Sanktpeterbg. 2, 2982 (1960)

    CAS  Google Scholar 

  19. H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, D.K. Pradhan, J. Mater. Sci. Mater. Electron. 29, 6966 (2018)

    Article  CAS  Google Scholar 

  20. M. Matsuura, H. Iida, K. Hirota, K. Ohwada, Y. Noguchi, M. Miyayama, Phys. Rev. B—Condens. Matter Mater. Phys. 87, 22 (2013)

    Article  Google Scholar 

  21. S. Pattipaka, A.R. James, P. Dobbidi, J. Alloys Compd. 765, 1195 (2018)

    Article  CAS  Google Scholar 

  22. C. Peng, J.F. Li, W. Gong, Mater. Lett. 59, 1576 (2005)

    Article  CAS  Google Scholar 

  23. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, Nat. Mater. 13, 31 (2014)

    Article  CAS  Google Scholar 

  24. Y. Yao, Y. Li, N. Sun, J. Du, X. Li, L. Zhang, Q. Zhang, X. Hao, J. Alloys Compd. 750, 228 (2018)

    Article  CAS  Google Scholar 

  25. J. Cui, Y. Zhang, J. Wang, Z. Zhao, H. Huang, W. Zou, M. Yang, R. Peng, W. Yan, Q. Huang, Z. Fu, Y. Lu, Phys. Rev. B 100, 165312 (2019)

    Article  CAS  Google Scholar 

  26. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  CAS  Google Scholar 

  27. H. Fujioka, in Handb. Cryst. Growth Thin Film. Ep. Second Ed. (2014), pp. 365–397

  28. S. Zorba, L. Yan, N.J. Watkins, Y. Gao, Appl. Phys. Lett. 81, 5195 (2002)

    Article  CAS  Google Scholar 

  29. B.C. Mohanty, H.R. Choi, Y.S. Cho, J. Appl. Phys. 106, 054908 (2009)

    Article  Google Scholar 

  30. S. Yim, T.S. Jones, Phys. Rev. B—Condens. Matter Mater. Phys. 73, 161305 (2006)

    Article  Google Scholar 

  31. S. Das Sarma, P.P. Chatraphorn, Z. Toroczkai, Phys. Rev. B—Condens. Matter Mater. Phys. 64, 2054071 (2001)

    Google Scholar 

  32. R. Kesarwani, P.P. Dey, A. Khare, RSC Adv. 9, 7967 (2019)

    Article  CAS  Google Scholar 

  33. G. Pradhan, P.P. Dey, A.K. Sharma, RSC Adv. 9, 12895 (2019)

    Article  CAS  Google Scholar 

  34. N. Rotenberg, A.D. Bristow, M. Pfeiffer, M. Betz, H.M. Van Driel, Phys. Rev. B—Condens. Matter Mater. Phys. 75, 1 (2007)

    Article  Google Scholar 

  35. G. Gowri, R. Saravanan, S. Sasikumar, M. Nandhakumar, R. Ragasudha, J. Mater. Sci. Mater. Electron. 30, 4409 (2019)

    Article  CAS  Google Scholar 

  36. K. Shan, Z.-Z. Yi, X.-T. Yin, D. Dastan, H. Garmestani, Dalt. Trans. 49, 8549 (2020)

    Article  CAS  Google Scholar 

  37. K. Shan, Z.-Z. Yi, X.-T. Yin, D. Dastan, F. Altaf, H. Garmestani, F.M. Alamgir, Surf. Interfaces 21, 100762 (2020)

    Article  CAS  Google Scholar 

  38. K. Shan, F. Zhai, Z.-Z. Yi, X.-T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Surf. Interfaces 23, 100905 (2021)

    Article  CAS  Google Scholar 

  39. T. Zhao, Z.H. Chen, F. Chen, H. Bin Lu, G.Z. Yang, H.S. Cheng, Appl. Phys. Lett. 77, 4338 (2000)

    Article  CAS  Google Scholar 

  40. D. Dastan, Appl. Phys. A Mater. Sci. Process. 123, 699 (2017)

    Article  Google Scholar 

  41. G.L. Tan, D. Tang, D. Dastan, A. Jafari, J.P.B. Silva, X.T. Yin, Mater. Sci. Semicond. Process. 122, 105506 (2021)

    Article  CAS  Google Scholar 

  42. G.L. Tan, D. Tang, D. Dastan, A. Jafari, Z. Shi, Q.Q. Chu, J.P.B. Silva, X.T. Yin, Ceram. Int. 47, 17153 (2021)

    Article  CAS  Google Scholar 

  43. Z.G. Zhang, F. Zhou, X.Q. Wei, M. Liu, G. Sun, C.S. Chen, C.S. Xue, H.Z. Zhuang, B.Y. Man, Phys. E Low-Dimens. Syst. Nanostruct. 39, 253 (2007)

    Article  CAS  Google Scholar 

  44. Y.L. Wang, X.K. Chen, M.C. Li, R. Wang, G. Wu, J.P. Yang, W.H. Han, S.Z. Cao, L.C. Zhao, Surf. Coatings Technol. 201, 5344 (2007)

    Article  CAS  Google Scholar 

  45. D. Yang, L. Xue, Thin Solid Films 494, 28 (2006)

    Article  CAS  Google Scholar 

  46. F. Yang, P. Wu, D.C. Sinclair, J. Mater. Chem. C 5, 7243 (2017)

    Article  CAS  Google Scholar 

  47. M. Pelliccione, T.M. Lu, Evolution of Thin Film Morphology (Springer, Berlinemclose, 2008)

    Google Scholar 

  48. K. Chopra, J. Klerrer, Thin Film Phenomena (McGraw-Hill, New York; London, 1970)

    Book  Google Scholar 

  49. D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109 (2015)

    Article  Google Scholar 

  50. R. Swanepoel, J. Phys. E 16, 1214 (1983)

    Article  CAS  Google Scholar 

  51. S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, J. Mater. Sci. Mater. Electron. 30, 18315 (2019)

    Article  CAS  Google Scholar 

  52. A.T.T. Mostako, A. Khare, Laser Part. Beams 30, 559 (2012)

    Article  CAS  Google Scholar 

  53. M. Bousquet, J.R. Duclère, E. Orhan, A. Boulle, C. Bachelet, C. Champeaux (2010) J. Appl. Phys. 107,104107

  54. J. Tauc, Opt. Prop. Solids 277 (1972)

  55. A. Joseph, J.P. Goud, S.R. Emani, K.C.J. Raju, AIP Conf. Proc. 1731, 80039 (2016)

    Article  Google Scholar 

  56. W. Zhang, X. Zhu, L. Liang, P. Yin, P. **e, D. Dastan, K. Sun, R. Fan, Z. Shi, J. Mater. Sci. 56, 4254 (2021)

    Article  CAS  Google Scholar 

  57. L. Sun, L. Liang, Z. Shi, H. Wang, P. **e, D. Dastan, K. Sun, R. Fan, Eng. Sci. 12, 95 (2020)

    CAS  Google Scholar 

  58. Y. Zhao, X. Hao, M. Li, J. Alloys Compd. 601, 112 (2014)

    Article  CAS  Google Scholar 

  59. J. Krupka, J. Eur. Ceram. Soc. 23, 2607 (2003)

    Article  CAS  Google Scholar 

  60. A. Rambabu, S. Bashaiah, K.C. James Raju, J. Mater. Sci. Mater. Electron. 25, 1172 (2014)

    Article  CAS  Google Scholar 

  61. J. Krupka, A.P. Gregory, O.C. Rochard, R.N. Clarke, B. Riddle, J. Baker-Jarvis, J. Eur. Ceram. Soc. 21, 2673 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities supported by DAE BRNS [37(1)/14/33/2015/BRNS] and [DST/CRG/19/0650], India. The authors are grateful to the Centre for Nanotechnology and Central Instruments Facility (CIF) and Indian Institute of Technology Guwahati, India, for providing experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamu Dobbidi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattipaka, S., Dobbidi, P., Pundareekam Goud, J. et al. Investigation of surface scaling, optical and microwave dielectric studies of Bi0.5Na0.5TiO3 thin films. J Mater Sci: Mater Electron 33, 8893–8905 (2022). https://doi.org/10.1007/s10854-021-06970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06970-8

Navigation