Log in

Polyaniline–poly(styrene sulfonate) hydrogel derived hierarchically porous N, S-codoped carbon for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

On account of the limited energy density of carbon-based supercapacitors, the heteroatom-doped carbons with hierarchically porous structure are extensively developed. Unfortunately, the facile synthesis remains a huge challenge. Herein, a hierarchically porous N, S-codoped carbon is prepared by carbonizing the conducting polymer hydrogel of polyaniline–poly(styrene sulfonate) (PANI–PSS), in which the PANI and PSS act as nitrogen and sulfur sources, respectively. Owing to inherent porous structure of hydrogel, and the pore-forming effects of Na+ ions and the inorganic byproducts, the resultant carbons exhibit ideal hierarchically porous structure with high specific surface area. The electrochemical performance is investigated by using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge, and the results show that the product prepared at 750 °C (NSC-750) exhibits the highest specific capacitance (376 F g−1 at 0.5 A g−1), and the smallest inner impedance, originating from its highest specific surface area (755 m2 g−1) and moderate do** of heteroatoms. The feasibility of product is demonstrated by the NSC-750 symmetric supercapacitor, which delivered high energy density of 11.7 Wh kg−1 with a power density of 250 W kg−1. The hydrogel-derived hierarchically porous N, S-codoped carbon with superior electrochemical performance highlights a facile and feasible pathway to synthesize high-performance carbons for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  3. P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020)

    Article  CAS  Google Scholar 

  4. Y. Wang, Y. Song, Y. **a, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)

    Article  CAS  Google Scholar 

  5. N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu, D. Golberg, Y.-K. Han, D.P. Dubal, True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16, 2002806 (2020)

    Article  CAS  Google Scholar 

  6. M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014)

    Article  CAS  Google Scholar 

  7. J. Zhou, L. Hou, S. Luan, J. Zhu, H. Gou, D. Wang, F. Gao, Nitrogen codoped unique carbon with 0.4 nm ultra-micropores for ultrahigh areal capacitance supercapacitors. Small 14, 1801897 (2018)

    Article  Google Scholar 

  8. Y. Deng, Y. **e, K. Zou, X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4, 1144–1173 (2016)

    Article  CAS  Google Scholar 

  9. J.P. Paraknowitsch, A. Thomas, Do** carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013)

    Article  CAS  Google Scholar 

  10. M. Yu, W. Qiu, F. Wang, T. Zhai, P. Fang, X. Lu, Y. Tong, Three dimensional architectures: design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 3, 15792–15823 (2015)

    Article  CAS  Google Scholar 

  11. L. Qie, W. Chen, H. Xu, X. **ong, Y. Jiang, F. Zou, X. Hu, Y. **n, Z. Zhang, Y. Huang, Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497–2504 (2013)

    Article  Google Scholar 

  12. H. Guo, B. Ding, J. Wang, Y. Zhang, X. Hao, L. Wu, Y. An, H. Dou, X. Zhang, Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon 136, 204–210 (2018)

    Article  CAS  Google Scholar 

  13. Z. Zhai, B. Ren, Y. Xu, S. Wang, L. Zhang, Z. Liu, Nitrogen self-doped carbon aerogels from chitin for supercapacitors. J. Power Sources 481, 228976 (2021)

    Article  CAS  Google Scholar 

  14. H. Pan, Y. Zhang, Y. Pan, W. Lin, W. Tu, H. Zhang, Nitrogen-doped porous carbon with interconnected tubular structure for supercapacitors operating at sub-ambient temperatures. Chem. Eng. J. 401, 126083 (2020)

    Article  CAS  Google Scholar 

  15. W. Wei, L. Wan, C. Du, Y. Zhang, J. Chen, M. **e, Template induced self-oxidative polymerization of phenols to mesoporous carbon doped with faradaic active oxygen for high-performance supercapacitor. Microporous Mesoporous Mater. 307, 110510 (2020)

    Article  CAS  Google Scholar 

  16. J. Han, L.L. Zhang, S. Lee, J. Oh, K.S. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, S. Park, Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano 7, 19–26 (2013)

    Article  CAS  Google Scholar 

  17. J. Zhou, H. Shen, Z. Li, S. Zhang, Y. Zhao, X. Bi, Y. Wang, H. Cui, S. Zhuo, Porous carbon materials with dual N, S-do** and uniform ultra-microporosity for high performance supercapacitors. Electrochim. Acta 209, 557–564 (2016)

    Article  CAS  Google Scholar 

  18. Y. Lu, J. Liang, S. Deng, Q. He, S. Deng, Y. Hu, D. Wang, Hypercrosslinked polymers enabled micropore-dominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 65, 103993 (2019)

    Article  CAS  Google Scholar 

  19. J. Chen, H. Wei, H. Chen, W. Yao, H. Lin, S. Han, N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim. Acta 271, 49–57 (2018)

    Article  CAS  Google Scholar 

  20. H. Chen, Y. **ong, T. Yu, P. Zhu, X. Yan, Z. Wang, S. Guan, Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior. Carbon 113, 266–273 (2017)

    Article  CAS  Google Scholar 

  21. L. Yan, D. Li, T. Yan, G. Chen, L. Shi, Z. An, D. Zhang, N, P, S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors. ACS Sustain. Chem. Eng. 6, 5265–5272 (2018)

    Article  CAS  Google Scholar 

  22. L. Sun, H. Zhou, L. Li, Y. Yao, H. Qu, C. Zhang, S. Liu, Y. Zhou, Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor. ACS Appl. Mater. Interfaces 9, 26088–26095 (2017)

    Article  CAS  Google Scholar 

  23. Y. Chang, H. Shi, X. Yan, G. Zhang, L. Chen, A ternary B, N, P-doped carbon material with suppressed water splitting activity for high-energy aqueous supercapacitors. Carbon 170, 127–136 (2020)

    Article  CAS  Google Scholar 

  24. L. Pan, G. Yu, D. Zhai, H.R. Lee W., Zhao, N. Liu, H. Wang, B.C.K. Tee, Y. Shi, Y. Cui, Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109, 9287–9292 (2012)

  25. T. Dai, Y. Jia, Supramolecular hydrogels of polyaniline–poly(styrene sulfonate) prepared in concentrated solutions. Polymer 52, 2550–2558 (2011)

    Article  CAS  Google Scholar 

  26. H. Huang, X. Zeng, W. Li, H. Wang, Q. Wang, Y. Yang, Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J. Mater. Chem. A 2, 16516–16522 (2014)

    Article  CAS  Google Scholar 

  27. H. Huang, J. Yao, L. Li, F. Zhu, Z. Liu, X. Zeng, X. Yu, Z. Huang, Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing-thawing method as self-supported electrode for supercapacitors. J. Mater. Sci. 51, 8728–8736 (2016)

    Article  CAS  Google Scholar 

  28. H. Huang, J. Yao, H. Qin, X. Zeng, H. Wang, Q. Wang, Y. Yang, Conducting hydrogels originating from high-pressure induced gelation of poly(vinyl alcohol) and in-situ polymerization of aniline. Synth. Met. 221, 15–18 (2016)

    Article  CAS  Google Scholar 

  29. J. Bo, X. Luo, H. Huang, L. Li, W. Lai, X. Yu, Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J. Power Sources 407, 105–111 (2018)

    Article  CAS  Google Scholar 

  30. D. Wei, J. Zhu, L. Luo, H. Huang, L. Li, X. Yu, Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. J. Mater. Sci. 55, 11779–11791 (2020)

    Article  CAS  Google Scholar 

  31. J. Huang, W. Zhang, H. Huang, Y. Liu, Q. Yang, L. Li, Facile synthesis of N, S-codoped hierarchically porous carbon with high volumetric pseudocapacitance. ACS Sustain. Chem. Eng. 7, 16710–16719 (2019)

    Article  CAS  Google Scholar 

  32. M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan, Q. Jiang, Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 8, 1800124 (2018)

    Article  Google Scholar 

  33. H. Huang, R. Chen, S. Yang, W. Zhang, Y. Fang, L. Li, Y. Liu, J. Huang, High-performance Si flexible anode with rGO substrate and Ca2+ crosslinked sodium alginate binder for lithium ion battery. Synth. Met. 247, 212–218 (2019)

    Article  CAS  Google Scholar 

  34. Z. Bi, L. Huo, Q. Kong, F. Li, J. Chen, A. Ahmad, X. Wei, L. **e, C.-M. Chen, Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface. ACS Appl. Mater. Interfaces 11, 11421–11430 (2019)

    Article  CAS  Google Scholar 

  35. E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19, 1032–1039 (2009)

    Article  Google Scholar 

  36. E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43, 786–795 (2005)

    Article  Google Scholar 

  37. A.B. Fuertes, M. Sevilla, Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 4344–4353 (2015)

    Article  CAS  Google Scholar 

  38. H. **, X. Feng, J. Li, M. Li, Y. **a, Y. Yuan, C. Yang, B. Dai, Z. Lin, J. Wang, J. Lu, S. Wang, Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew. Chem. Int. Ed. 58, 2397–2401 (2019)

    Article  CAS  Google Scholar 

  39. J. Huang, J. Tu, Y. Lv, Y. Liu, H. Huang, L. Li, J. Yao, Achieving mesoporous MnO2@polyaniline nanohybrids via a gas/liquid interfacial reaction between aniline and KMnO4 aqueous solution towards Zn–MnO2 battery. Synth. Met. 266, 116438 (2020)

    Article  CAS  Google Scholar 

  40. H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. **ao, Y. Zhang, Y. Li, Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019)

    Article  Google Scholar 

  41. D. Zhang, L. Zheng, Y. Ma, L. Lei, Q. Li, Y. Li, H. Luo, H. Feng, Y. Hao, Synthesis of nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl. Mater. Interfaces 6, 2657–2665 (2014)

    Article  CAS  Google Scholar 

  42. X. Wei, H. Zou, S. Gao, Chemical crosslinking engineered nitrogen-doped carbon aerogels from polyaniline–boric acid–polyvinyl alcohol gels for high-performance electrochemical capacitors. Carbon 123, 471–480 (2017)

    Article  CAS  Google Scholar 

  43. L. **ao, J. Yin, Y. Li, Q. Yuan, H. Shen, G. Hu, W. Gan, Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol. Analyst 141, 5555–5562 (2016)

    Article  CAS  Google Scholar 

  44. Zhao X., Zhang Q., Chen C.-M., Zhang B., Reiche S., Wang A., Zhang T., Schlögl R., D. Sheng Su, Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1, 624–630 (2012)

  45. S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5, 1401401 (2015)

    Article  Google Scholar 

  46. Y. Zhang, Y. Li, X. Mu, B. Huang, J. Du, S. Zhang, Y. Liu, J. Fu, Y. Sheng, Z. Zhang, E. **e, Nanofoaming to boost electrochemical performance of three-dimensional compressible carbon monoliths for robust supercapacitors. Electrochim. Acta 297, 504–510 (2019)

    Article  CAS  Google Scholar 

  47. W. Liu, J. Mei, G. Liu, Q. Kou, T. Yi, S. **ao, Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors. ACS Sustain. Chem. Eng. 6, 11595–11605 (2018)

    Article  CAS  Google Scholar 

  48. J. **, X. Qiao, F. Zhou, Z.-S. Wu, L. Cui, H. Fan, Interconnected phosphorus and nitrogen codoped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl. Mater. Interfaces 9, 17318–17326 (2017)

    Google Scholar 

  49. Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang, Y. Hu, D. Wang, L. Zuin, T. Zhou, Y. Wu, S. Sun, High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018)

    Article  Google Scholar 

  50. H. Huang, J. Yao, H. Chen, X. Zeng, C. Chen, X. She, L. Li, Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J. Mater. Sci. 51, 4047–4054 (2016)

    Article  CAS  Google Scholar 

  51. Y. Zhang, Q. Sun, K. ** and moderate porosity for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 7, 5717–5726 (2019)

    Article  CAS  Google Scholar 

  52. Z. Ye, F. Wang, C. Jia, Z. Shao, Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. J. Mater. Sci. 53, 12374–12387 (2018)

    Article  CAS  Google Scholar 

  53. J. Shao, F. Ma, G. Wu, W. Geng, S. Song, J. Wan, D. Ma, Facile preparation of 3D nanostructured O/N co-doped porous carbon constructed by interconnected carbon nanosheets for excellent-performance supercapacitors. Electrochim. Acta 222, 793–805 (2016)

    Article  CAS  Google Scholar 

  54. F. Sun, J. Gao, X. Pi, L. Wang, Y. Yang, Z. Qu, S. Wu, High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources 337, 189–196 (2017)

    Article  CAS  Google Scholar 

  55. W. Shi, B. Chang, H. Yin, S. Zhang, B. Yang, X. Dong, Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. Sustain. Energy Fuels 3, 1201–1214 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (51602230) and Opening Project (No. JDGD-202009) of Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, People’s Republic of China. We also thank the Center of Analysis and Test of Wuhan Institute of Technology for the Raman, XRD, XPS, and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Wang or Juan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, Y., Hu, J. et al. Polyaniline–poly(styrene sulfonate) hydrogel derived hierarchically porous N, S-codoped carbon for high-performance supercapacitors. J Mater Sci: Mater Electron 32, 8916–8931 (2021). https://doi.org/10.1007/s10854-021-05563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05563-9

Navigation