Log in

Structural and Magnetic Studies of CoxFe100−x Thin Films Thermally Evaporated on Glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CoxFe100−x thin films are thermally evaporated under vacuum onto glass substrate. The structural and magnetic properties of these films are investigated as a function of cobalt content x. The X-ray patterns exhibit three diffraction Bragg peaks (110), (200), and (211) with a body centered cubic phase structure. The crystallite size parameter fluctuates with the composition. The lattice parameter decreases monotonically as the cobalt content increases. The saturation magnetization Ms evolution has been found to decrease with cobalt content increasing, following rigorously the Slater–Pauling curve. Relationships between coercivity, crystallite size, and surface roughness have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.S. Sundar and and S.C. Deevi, Soft magnetic FeCo alloys: alloy development, processing, and properties. Int. Mater. Rev. 50, 157–192 (2005)

    Article  CAS  Google Scholar 

  2. A. Premkumar Murugaiyan, R. Abhinav, A.K. Verma, A. Panda, S. Mitra, R.K. Baysakh, Roy, Influence of Al addition on structural, crystallization and soft magnetic properties of DC Joule annealed FeCo based nanocrystalline alloys. J. Magn. Magn. Mater. 448, 66–74 (2018)

    Article  Google Scholar 

  3. Akhilesh Kr. J.-H. Singh, Hsu, Effect of heat treatment on interface driven magnetic properties of CoFe, J. Magn. Magn. Mater. 432 (2018)96–101

    Google Scholar 

  4. H. Zhang, X. Tang, R. Wei, S. Zhu, J. Yang, W. Song, J. Dai, X. Zhu, Y. Sun, Microstructure refinement and magnetization improvement in CoFe thin films by high magnetic field annealing. J. Alloys Compd. 729, 730–734 (2017)

    Article  CAS  Google Scholar 

  5. G. Scheunert, O. Heinonen, R. Hardeman, A. Lapicki, M. Gubbins, R.M. Bowman, A review of high magnetic moment thin films for microscale and nanotechnology applications. Appl. Phys. Rev. 3, 011301 (2016)

    Article  Google Scholar 

  6. H. Zhu, Y. Yang, H. Duan, G. Zhao, Y. Liu, Electromagnetic interference shielding polymer composites with magnetic and conductive FeCo/reduced graphene oxide 3D networks. J. Mater. Sci.: Mater. Electron. 30, 2045–2056 (2019)

    CAS  Google Scholar 

  7. Y. **g, Y. Huang, P. Liu, C. Wei, Large-scale controlled synthesis of magnetic FeCo alloy with different morphologies and their high performance of electromagnetic wave absorption. J. Mater. Sci.: Mater. Electron. 28, 3159–3167 (2017)

    Google Scholar 

  8. V.G. Bayev, J.A. Fedotova, S.A. Vorobyova, I.A. Svito, O.A. Ivashkevich, S.I. Tyutyunnikov, N.N. Kolobylina, P.V. Guryeva, Mössbauer spectroscopy and magnetometry of FeCo-Ag and FeCo-Au nanocomposites synthesized by a redox-transmetalation method. Mater. Chem. Phys. 216, 349–353 (2018)

    Article  CAS  Google Scholar 

  9. A. Melloul, A. Kharmouche, Synthesis, structure and magnetic properties of CoxFe100–x thin films thermally evaporated onto Si (111) substrate. J. Mater. Sci.: Mater. Electron. 30, 13144–13150 (2019)

    CAS  Google Scholar 

  10. M. Atakan Tekgül, H. Alper, Kockar, Magnetoresistance behaviour in CoFe/Cu multilayers: thin Cu layer effect. J. Mater. Sci.: Mater. Electron. 27, 10059–10064 (2016)

    Google Scholar 

  11. N.V.S.S. Seshagiri Rao, V. Satya Narayana, Murthy, Comparative Study of magnetization reversal process between elliptical and rectangular CoFe nanomagnets. Trans. Indian Inst. Metals 70, 567–572 (2017)

    Article  CAS  Google Scholar 

  12. S. **g Zhou, W. Chen, Q. Lin, L. Qin, S. Liu, J. He, Chen, Effects of field annealing on Gilbert dam** of polycrystalline CoFe thin films. J. Magn. Magn. Mater. 441, 264–270 (2017)

    Article  Google Scholar 

  13. R.M. Bozorth, Ferromagnetism (Van Nostrand Inc., Princeton, 1951)

    Google Scholar 

  14. Z. Zhenxi Shang, Z. Chen, J. Zhang, S. Yu, F. Tan, Z. Ciucci, H. Shao, D. Lei, Chen, CoFe nanoalloy particles encapsulated in nitrogen-doped carbon layers as bifunctional oxygen catalyst derived from a Prussian blue analogue. J. Alloys Compd. 740, 743–753 (2018)

    Article  Google Scholar 

  15. M.P. Alan, R.D. Sakita, E. Noce, A.V. Vallés, Benedettia, Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction. Appl. Surf. Sci. 434, 1153–1160 (2018)

    Article  Google Scholar 

  16. M. Atakan Tekgül, H. Alper, M. Kockar, Haciismailoglu, The effect of ferromagnetic and non-ferromagnetic layer thicknesses on the electrodeposited CoFe/Cu multilayers. J. Mater. Sci.: Mater. Electron. 26, 2411–2417 (2015)

    Google Scholar 

  17. T. Cuihua, T. Yang, Z. Liu, Y. Qing, B. Zhang, J. Zhou, Y. Wu, Well-aligned arrangement CoFe nanoparticles assisted with cellulose nanofibrils for efficient oxygen evolution reaction. Appl. Surf. Sci. 510, 145484 (2020)

    Article  Google Scholar 

  18. J. Ben Huang, Y. Yue, X. Wei, X. Huang, Z. Tang, Du, Enhanced microwave absorption properties of carbon nanofibers functionalized by FeCo coatings. Appl. Surf. Sci. 483, 98–105 (2019)

    Article  Google Scholar 

  19. D. Prabhanjan, P.V. Kulkarni, P. Sreevidya, Jakeer Khan, H.C. Predeep, P. Barshilia, Chowdhury, Reduction in magnetic exchange bias in CoFe/FeMn/CoFe trilayers due to reduced pinned uncompensated moments in AFM layer. J. Magn. Magn. Mater. 472, 111–114 (2019)

    Article  Google Scholar 

  20. Y.X. Wang, Y.R. Liu, K. Wei, Y. He, J. Huang, Q. Liu, G. Han, Magnetic properties and magnetization reversal process in (Pt/CoFe/MgO)10 multilayers at low temperature. J. Magn. Magn. Mater. 499, 166318 (2020)

    Article  CAS  Google Scholar 

  21. F.F. Barbosa, A.P.F. Paulista, M.A.M. Torres, T.P. Braga, Synthesis of the Fe–Co alloy from hybrid spheres using carboxymethyl cellulose as template and its application in catalysis. Mater. Chem. Phys. 242, 122550 (2020)

    Article  CAS  Google Scholar 

  22. N.I. Polushkin, I.Y. Pashenkin, E. Fadeev, E. Lähderanta, A.A. Fraerman, Magnetic and magnetocaloric properties of Py/Gd/CoFe/IrMn stacks. J. Magn. Magn. Mater. 491, 165601 (2019)

    Article  CAS  Google Scholar 

  23. P.W. Jang, D.W. Kim, C.H. Park, J.G. Na, S.R. Lee, Magnetic and structural properties of (Co1 – xFex)Pt thin films. J. Appl. Phys. 83, 6614 (1998)

    Article  CAS  Google Scholar 

  24. H. Kanazawa, G. Lauhoff, T. Suzuki, Magnetic and structural properties of (CoxFe100–x)50 Pt50 alloy thin films. J. Appl. Phys. 87, 6143 (2000)

    Article  CAS  Google Scholar 

  25. A. Kharmouche, S.-M. Cherif, G. Schmerber, A. Bourzami, Magnetic and structural properties of evaporated CoxCr1–x /Si (1 0 0) and CoxCr1–x /glass thin films. J. Magn. Magn. Mater. 310, 152–158 (2007)

    Article  CAS  Google Scholar 

  26. A. Kharmouche, I. Djouada, Structural studies of evaporated CoxCr1–x/Si (1 0 0) and CoxCr1–x/glass thin films. Appl. Surf. Sci. 254, 5732–5735 (2008)

    Article  CAS  Google Scholar 

  27. A. Kharmouche, S.-M. Cherif, Y. Roussigne, G. Schmerber, Effect of Cr on the magnetic properties of evaporated CoxCr1–x/Si(1 0 0) and CoxCr1–x /glass thin films. Appl. Surf. Sci. 255, 6173–6178 (2009)

    Article  CAS  Google Scholar 

  28. I. Bensehil, A. Kharmouche, A. Bourzami, Synthesis, structural, and magnetic properties of Fe thin films. J. Supercond. Novel Magn. 30, 795–799 (2017)

    Article  CAS  Google Scholar 

  29. I. Baker. Thayer School of Engineering, Dartmouth College, NH, USA, ICDD Grant-in-Aid, (1997). Reference code: 00-049-1567

  30. P. Baylis, University of Calgaray, Alberta, Canada, ICDD Grantin-Aid (1990). File: 00-044-1433

  31. L. Bessais, K. Zehani, R. Bez, J. Moscovici, H. Lassri, E.K. Hliland, N. Mliki, High magnetic moment CoFe nanoparticles. In: TMS2014 Annual Meeting(2014), Supplemental Proceedings TMS (The Minerals, Metals & Materials Society), pp. 15–22.

  32. Y. Mehboob Hassan, X. Jiang, M.B. Zhou, Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 188, 339–348 (2018)

    Article  Google Scholar 

  33. T. Thanakrit Chotibhawaris, P. Luangvaranunt, Y. Jantaratana, Boonyongmaneerat, Effects of thermal annealing on microstructure and magnetic properties of electrodeposited Co-Fe alloys. Intermetallics 93, 323–328 (2018)

    Article  Google Scholar 

  34. A. Kharmouche, I. Bensehil, Synthesis, structural and magnetic properties of physical vapor deposited Fe/Si(100) and Fe/Si(111) thin films. J. Mater. Sci.: Mater. Electron. 30, 631–638 (2019)

    CAS  Google Scholar 

  35. L. Vegard, Z. Phys. 5(1), 17 (1921)

    Article  CAS  Google Scholar 

  36. M. Tinouche, A. Kharmouche, B. Aktas¸, F. Yildiz, A.N. Koçbay, Magnetic and structural properties of Co thin films evaporated on GaAs substrate. J. Supercond. Novel Magn. 28, 921–925 (2015)

    Article  CAS  Google Scholar 

  37. C. Eid, E. Assaf, R. Habchi, P. Miele, M. Bechelany, Tunable properties of GO-doped CoFe2O4 nanofibers elaborated by electrospinning. RSC Adv. 5, 97849–97854 (2015)

    Article  CAS  Google Scholar 

  38. G. Binnig, C.F. Quate, C.H. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  CAS  Google Scholar 

  39. D.-Y. Daheum Kim, B.Y. Park, P.T.A. Yoo, N.V. Sumodjo, Myung, Magnetic properties of nanocrystalline iron group thin film alloys electrodeposited from sulfate and chloride baths. Electrochim. Acta 48, 819–830 (2003)

    Article  Google Scholar 

  40. P. Weiss, The magnetic properties of the alloys of the ferromagnetic metals: iron-nickel, nickel-cobalt, cobalt-iron. Trans. Faraday Soc. 8, 149–156 (1912)

    Article  Google Scholar 

  41. G.Y. Chin, J.H. Wernick, Ferromagnetic material. North-Holland Publishing Company, Amsterdam, 1980, p. 170

  42. I. Tabakovic, V. Venkatasamy, Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs = 2.4–2.59 T) by reverse pulse electrodeposition. J. Magn. Magn. Mater. 452, 306–314 (2018)

    Article  CAS  Google Scholar 

  43. F. Pfeifer, C. Radeloff, Soft magnetic Ni-Fe and Co-Fe alloys-some physical and metallurgical aspects. J. Magn. Magn. Mater. 19, 190–207 (1980)

    Article  CAS  Google Scholar 

  44. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26(5), 1397–1402 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by The Algerian Directorate General for Scientific Research and Technological Development (DGRSDT) of The Ministry of Higher Education and Scientific Research (MESRS) of the People’s Democratic Republic of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kharmouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharmouche, A., Melloul, A. Structural and Magnetic Studies of CoxFe100−x Thin Films Thermally Evaporated on Glass. J Mater Sci: Mater Electron 31, 19680–19690 (2020). https://doi.org/10.1007/s10854-020-04494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04494-1

Navigation