Log in

Interfacial transformation of preoxidized Cu microparticles in a formic-acid atmosphere for pressureless Cu–Cu bonding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wide bandgap (WBG) power devices have been attracting increasing attention for next-generation electronic applications. Cu–Cu bonding has been developed to accommodate the high temperature and current characteristics encountered in WBG semiconductors service conditions. In this study, we demonstrate and optimize a pressureless Cu–Cu bonding method by reductively sintering preoxidized Cu microparticles in a formic-acid atmosphere, and provide information on the bonding mechanism and relationship between behaviors of Cu microparticles and bonding quality. The transformation of Cu microparticles was examined at different preoxidation intervals, which were followed by a reduction reaction. The Cu oxide produced by preoxidation is critical for reliable Cu–Cu bonding because it forms linkages between Cu microparticles during the process; additionally, it fills the gaps between the individual particles to increase bonding density. In both thermal aging and cycling test, it was found that the Cu–Cu bonding exhibited similar microstructures and oxidation behavior, but followed different degradation and failure modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.G. Neudeck, R.S. Okojie, L.-Y. Chen, High-temperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90, 1065 (2002)

    Google Scholar 

  2. H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 41, 824 (2010)

    Article  Google Scholar 

  3. V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: a review. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011)

    Article  CAS  Google Scholar 

  4. T. Hu, H. Chen, M. Li, Die attach materials with high remelting temperatures created by bonding Cu@ Sn microparticles at lower temperatures. Mater. Des. 108, 383 (2016)

    Article  CAS  Google Scholar 

  5. F.P. McCluskey, M. Dash, Z. Wang, D. Huff, Reliability of high temperature solder alternatives. Microelectron. Reliab. 46, 1910 (2006)

    Article  CAS  Google Scholar 

  6. J. Cho, R. Sheikhi, S. Mallampati, L. Yin, D. Shaddock, Bismuth-based transient liquid phase (TLP) bonding as high-temperature lead-free solder alternatives, in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC)IEEE (2017)

  7. M.M. Hou, T.W. Eagar, Low temperature transient liquid phase (LTTLP) bonding for Au/Cu and Cu/Cu interconnections. J. Electron. Packag. 114(4), 443–447 (1992)

    Article  Google Scholar 

  8. X. Liu, S. Zhou, H. Nishikawa, Thermal stability of low-temperature sintered joint using Sn-coated Cu particles during isothermal aging at 250 °C. J. Mater. Sci.: Mater. Electron. 28, 12606 (2017)

    CAS  Google Scholar 

  9. K.S. Siow, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging, 1st edn. (Springer, Berlin, 2019), pp. 9–10

    Book  Google Scholar 

  10. H. Nishikawa, T. Hirano, T. Takemoto, N. Terada, Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste. Open Surf. Sci. J. 3, 60 (2011)

    Article  CAS  Google Scholar 

  11. A. Zinn, R. Stoltenberg, A. Fried et al., nanoCopper based solder-free electronic assembly material. Nanotech 2, 71 (2012)

    CAS  Google Scholar 

  12. T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, N. Terada, Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste. J. Electron. Mater. 42, 1260 (2013)

    Article  CAS  Google Scholar 

  13. J. Li, X. Yu, T. Shi et al., Low-temperature and low-pressure Cu–Cu bonding by highly sinterable Cu nanoparticle paste. Nanoscale Res. Lett. 12, 255 (2017)

    Article  Google Scholar 

  14. X. Wang, Y. Mei, X. Li, M. Wang, Z. Cui, G.-Q. Lu, Pressureless sintering of nanosilver paste as die attachment on substrates with ENIG finish for semiconductor applications. J. Alloys Compd. 777, 578 (2019)

    Article  CAS  Google Scholar 

  15. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, A low-temperature bonding process using mixed Cu–Ag nanoparticles. J. Electron. Mater. 39, 1283 (2010)

    Article  CAS  Google Scholar 

  16. C. Chen, S. Noh, H. Zhang et al., Bonding technology based on solid porous Ag for large area chips. Scr. Mater. 146, 123 (2018)

    Article  CAS  Google Scholar 

  17. A.K. Panigrahi, T. Ghosh, S.R.K. Vanjari, S.G. Singh, Demonstration of sub 150° C Cu-Cu thermocompression bonding for 3D IC applications, utilizing an ultra-thin layer of Manganin alloy as an effective surface passivation layer. Mater. Lett. 194, 86 (2017)

    Article  CAS  Google Scholar 

  18. Y.Y. Dai, M.Z. Ng, P. Anantha, C.L. Gan, C.S. Tan, Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects. Appl. Phys. Lett. 108, 26 (2016)

    Google Scholar 

  19. X. Liu, H. Nishikawa, Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging. Scr. Mater. 120, 80 (2016)

    Article  CAS  Google Scholar 

  20. X. Liu, H. Nishikawa, Improved joint strength with sintering bonding using microscale Cu particles by an oxidation-reduction process, in Electronic Components and Technology Conference (ECTC), 2016 IEEE 66thIEEE, (2016)

  21. T. Yao, T. Matsuda, T. Sano et al., In situ study of reduction process of CuO paste and its effect on bondability of Cu-to-Cu joints. J. Electron. Mater. 47, 2193 (2018)

    Article  CAS  Google Scholar 

  22. S. He, R. Gao, J. Li, Y.-A. Shen, H. Nishikawa, In-situ observation of fluxless soldering of Sn-3.0Ag-0.5Cu/Cu under a formic acid atmosphere. Mater. Chem. Phys. 239, 1 (2020)

    Article  Google Scholar 

  23. W. Lin, Y. Lee, Study of fluxless soldering using formic acid vapor. IEEE Trans. Adv. Packag. 22, 592 (1999)

    Article  CAS  Google Scholar 

  24. S. He, R. Gao, Y.-A. Shen, J. Li, H. Nishikawa, Wettability, interfacial reactions, and impact strength of Sn–30Ag–05Cu solder/ENIG substrate used for fluxless soldering under formic acid atmosphere. J. Mater. Sci. 55, 7 (2020)

    Google Scholar 

  25. J. Liu, H. Chen, H. Ji, M. Li, Highly conductive Cu–Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS Appl. Mater. Interfaces 8, 33289 (2016)

    Article  CAS  Google Scholar 

  26. R. Gao, S. He, Y.-A. Shen, H. Nishikawa, Effect of substrates on fracture mechanism and process optimization of oxidation-reduction bonding with copper microparticles. J. Electron. Mater. 48, 2263 (2019)

    Article  CAS  Google Scholar 

  27. S.T. Chua, K.S. Siow, Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 C. J. Alloy. Compd. 687, 486–498 (2016)

    Article  CAS  Google Scholar 

  28. Y. Joliff, J. Absi, M. Huger, J.C. Glandus, Microcracks with unexpected characteristics induced by CTE mismatch in two-phase model materials. J. Mater. Sci. 43(1), 330–337 (2008)

    Article  CAS  Google Scholar 

  29. N. Pilling, The oxidation of metals at high temperature. J. Inst. Met. 29, 529 (1923)

    Google Scholar 

  30. C. Xu, W. Gao, Pilling-Bedworth ratio for oxidation of alloys. Mater. Res. Innov. 3, 231 (2000)

    Article  CAS  Google Scholar 

  31. C.H. Xu, C.H. Woo, S.Q. Shi, Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004)

    Article  CAS  Google Scholar 

  32. M. Bowker, E. Rowbotham, F. Leibsle, S. Haq, The adsorption and decomposition of formic acid on Cu {110}. Surf. Sci. 349, 97 (1996)

    Article  CAS  Google Scholar 

  33. A.K. Singh, S. Singh, A. Kumar, Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catal. Sci. Technol. 6, 12 (2016)

    Article  Google Scholar 

  34. F. Conti, A. Hanss, C. Fischer, G. Elger, Thermogravimetric investigation on the interaction of formic acid with solder joint materials. New J. Chem. 40, 10482 (2016)

    Article  CAS  Google Scholar 

  35. B. Hayden, K. Prince, D. Woodruff, A. Bradshaw, An IRAS study of formic acid and surface formate adsorbed on Cu (110). Surf. Sci. 133, 589 (1983)

    Article  CAS  Google Scholar 

  36. T. Fujimoto, T. Ogura, T. Sano, M. Takahashi, A. Hirose, Joining of pure copper using Cu nanoparticles derived from CuO paste. Mater. Trans. 56, 992 (2015)

    Article  CAS  Google Scholar 

  37. J. Li, X. Li, L. Wang, Y.-H. Mei, G.-Q. Lu, A novel multiscale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air. Mater. Des. 140, 64 (2018)

    Article  Google Scholar 

  38. S. Hong, C.L. Fu, Theoretical study on cracking behavior in two-phase alloys Cr–Cr2X (X= Hf, Nb, Ta, Zr). Intermetallics 9(9), 799–805 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Runhua Gao thanks the China Scholarship Council for doctoral research assistantships (Support Number: 201706050096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runhua Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., He, S., Li, J. et al. Interfacial transformation of preoxidized Cu microparticles in a formic-acid atmosphere for pressureless Cu–Cu bonding. J Mater Sci: Mater Electron 31, 14635–14644 (2020). https://doi.org/10.1007/s10854-020-04026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04026-x

Navigation