Log in

Morphology-dependent electrochemical energy storage property of metallic molybdenum sulfide nanosheets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrochemical properties of 2D nanomaterials are strongly dependent on their morphology and crystal structure. In this work, we have prepared 2D-MoS2 nanosheets with controlled morphology through the addition of cationic, anionic, and non-ionic surfactants using the hydrothermal method. The morphology of the as-prepared samples is confirmed with SEM and TEM analysis. Galvanostatic charge storage measurements show that the hydrangea flower-like MoS2 electrode has a high specific capacity of 304 C/g at 1 A/g current density. The fabricated symmetric supercapacitor with this electrode material gives a high energy density and power density of 37 Wh/kg and 650 W/kg, respectively, with high stability over 35,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011)

    CAS  Google Scholar 

  2. B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)

    CAS  Google Scholar 

  3. A. Kraytsberg, Y. Ein-Eli, Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources 196(3), 886–893 (2011)

    CAS  Google Scholar 

  4. I. Buchmann, Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers (Cadex Electronics, Richmond, 2001)

    Google Scholar 

  5. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)

    CAS  Google Scholar 

  6. M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139(2), 72–79 (2012)

    Google Scholar 

  7. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    CAS  Google Scholar 

  8. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015)

    CAS  Google Scholar 

  9. K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: materials and devices. J. Energy Storage 21, 801–825 (2019)

    CAS  Google Scholar 

  10. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015)

    CAS  Google Scholar 

  11. J.P. Zheng, T.R. Jow, A new charge storage mechanism for electrochemical capacitors. J. Electrochem. Soc. 142(1), L6–L8 (1995)

    CAS  Google Scholar 

  12. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)

    CAS  Google Scholar 

  13. M. Zhi, C. **ang, J. Li, M. Li, N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1), 72–88 (2013)

    CAS  Google Scholar 

  14. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015)

    CAS  Google Scholar 

  15. Y. Wang, Y. Song, Y. **a, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    CAS  Google Scholar 

  16. J.A. Fernandez, M. Arulepp, J. Leis, F. Stoeckli, T.A. Centeno, EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes. Electrochim. Acta 53(24), 7111–7116 (2008)

    CAS  Google Scholar 

  17. A. Lewandowski, M. Galinski, Practical and theoretical limits for electrochemical double-layer capacitors. J. Power Sources 173(2), 822–828 (2007)

    CAS  Google Scholar 

  18. Q. Lu, J.G. Chen, J.Q. **ao, Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. 52(7), 1882–1889 (2013)

    CAS  Google Scholar 

  19. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012)

    CAS  Google Scholar 

  20. G.H. Jeong, S. Baek, S. Lee, S.W. Kim, Metal oxide/graphene composites for supercapacitive electrode materials. Chem. Asian J. 11(7), 949–964 (2016)

    CAS  Google Scholar 

  21. M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, A review of metal oxide composite electrode materials for electrochemical capacitors. Nano 9(06), 1430002 (2014)

    CAS  Google Scholar 

  22. Y.H. Liu, J.L. Xu, X. Gao, Y.L. Sun, J.J. Lv, S. Shen, L.S. Chen, S.D. Wang, Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors. Energy Environ. Sci. 10(12), 2534–2543 (2017)

    CAS  Google Scholar 

  23. G.Z. Chen, August, Perception of supercapacitor and supercapattery. In: Meeting Abstracts, Electrochemical Society, No. 11, pp. 559–559 (2011)

  24. J. **e, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions. J. Power Sources 401, 213–223 (2018)

    CAS  Google Scholar 

  25. N. Tang, H. You, M. Li, G.Z. Chen, L. Zhang, Cross-linked Ni(OH)2/CuCo2S4/Ni networks as binder-free electrodes for high performance supercapatteries. Nanoscale 10(44), 20526–20532 (2018)

    CAS  Google Scholar 

  26. H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K.M. Razeeb, Cobalt phosphate-based supercapattery as alternative power source for implantable medical devices. Appl. Energy Mater. 2(1), 569–578 (2018)

    Google Scholar 

  27. T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), A5185–A5189 (2015)

    CAS  Google Scholar 

  28. P. Himasree, I.K. Durga, T.N.V. Krishna, S.S. Rao, C.V.M. Gopi, S. Revathi, K. Prabakar, H.J. Kim, One-step hydrothermal synthesis of CuS@MnS on Ni foam for high performance supercapacitor electrode material. Electrochim. Acta 305, 467–473 (2019)

    CAS  Google Scholar 

  29. L. Yu, G.Z. Chen, Redox electrode materials for supercapatteries. J. Power Sources 326, 604–612 (2016)

    CAS  Google Scholar 

  30. P. Wang, H. Cai, X. Li, Y. Yang, G. Li, J. **e, H. **a, P. Sun, D. Zhang, J. **ong, Construction of hierarchical NiCo2S4 nanotube@ NiMoO4nanosheet hybrid arrays as advanced battery-type electrodes for hybrid supercapacitors. New J. Chem. 43(18), 7065–7073 (2019)

    CAS  Google Scholar 

  31. N. Padmanathan, H. Shao, D. McNulty, C. O’Dwyer, K.M. Razeeb, Hierarchical NiO–In2O3 microflower(3D)/nanorod(1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J. Mater. Chem. A 4(13), 4820–4830 (2016)

    CAS  Google Scholar 

  32. C. Yang, M. Sun, L. Zhang, P. Liu, P. Wang, H. Lu, ZnFe2O4@ Carbon core–shell nanoparticles encapsulated in reduced graphene oxide for high-performance li-ion hybrid supercapacitors. Appl. Mater. Interfaces 11(16), 14713–14721 (2019)

    CAS  Google Scholar 

  33. N. Joseph, A.C. Bose, Metallic MoS2 grown on porous g-C3N4 as an efficient electrode material for supercapattery application. Electrochim. Acta 301, 401–410 (2019)

    CAS  Google Scholar 

  34. C. Liu, X. Zhao, S. Wang, Y. Zhang, W. Ge, J. Li, J. Cao, J. Tao, X. Yang, Freestanding, three-dimensional and conductive MoS2 hydrogel via the mediation of surface charges for high-rate supercapacitor. Appl. Energy Mater. 2(6), 4458–4463 (2019)

    CAS  Google Scholar 

  35. K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, Recent advances in two dimensional nanomaterials for supercapacitor electrode applications. Energy Lett. 3(2), 482–495 (2018)

    CAS  Google Scholar 

  36. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017)

    CAS  Google Scholar 

  37. X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115(21), 11941–11966 (2015)

    CAS  Google Scholar 

  38. A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90(6), 627–648 (2017)

    Google Scholar 

  39. Y.P. Gao, X. Wu, K.J. Huang, L.L. **ng, Y.Y. Zhang, L. Liu, Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. CrystEngComm 19(3), 404–418 (2017)

    CAS  Google Scholar 

  40. T. Wang, S. Chen, H. Pang, H. Xue, Y. Yu, MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 4(2), 1600289 (2017)

    Google Scholar 

  41. I. Song, C. Park, H.C. Choi, Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv. 5(10), 7495–7514 (2015)

    CAS  Google Scholar 

  42. M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313 (2015)

    CAS  Google Scholar 

  43. N. Li, H. Zhao, Y. Zhang, Z. Liu, X. Gong, Y. Du, Core–shell structured CeO2@MoS2 nanocomposites for high performance symmetric supercapacitors. CrystEngComm 18(22), 4158–4164 (2016)

    CAS  Google Scholar 

  44. I. Aldama, V. Barranco, T.A. Centeno, J. Ibañez, J.M. Rojo, Composite electrodes made from carbon cloth as supercapacitor material and manganese and cobalt oxide as battery one. J. Electrochem. Soc. 163(5), A758–A765 (2016)

    CAS  Google Scholar 

  45. S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2015)

    Google Scholar 

  46. N. ThiXuyen, J.M. Ting, Hybridized 1T/2H MoS2 having controlled 1T concentrations and its use in supercapacitors. Chem. Eur. J. 23(68), 17348–17355 (2017)

    CAS  Google Scholar 

  47. X. Geng, Y. Zhang, Y. Han, J. Li, L. Yang, M. Benamara, L. Chen, H. Zhu, Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett. 17(3), 1825–1832 (2017)

    CAS  Google Scholar 

  48. Y. Li, L. Wang, S. Zhang, X. Dong, Y. Song, T. Cai, Y. Liu, Cracked monolayer 1TMoS2 with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catal. Sci. Technol. 7(3), 718–724 (2017)

    CAS  Google Scholar 

  49. A. Ejigu, I.A. Kinloch, E. Prestat, R.A. Dryfe, A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors. J. Mater. Chem. A 5(22), 11316–11330 (2017)

    CAS  Google Scholar 

  50. D. Wang, Y. **ao, X. Luo, Z. Wu, Y.J. Wang, B. Fang, Swollen ammoniated MoS2 with 1T/2H hybrid phases for high-rate electrochemical energy storage. ACS Sustain. Chem. Eng. 5(3), 2509–2515 (2017)

    CAS  Google Scholar 

  51. D.K. Nandi, S. Sahoo, S. Sinha, S. Yeo, H. Kim, R.N. Bulakhe, J. Heo, J.J. Shim, S.H. Kim, Highly uniform atomic layer-deposited MoS2@ 3D-Ni-foam: a novel approach to prepare an electrode for supercapacitors. Appl. Mater. Interfaces 9(46), 40252–40264 (2017)

    CAS  Google Scholar 

  52. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001), pp. 233–235

    Google Scholar 

  53. Z. Li, Z. Qin, W. Zhang, Z. Li, Controlled synthesis of Ni(OH)2/MoS2 nanohybrids for high-performance supercapacitors. Mater. Chem. Phys. 209, 291–297 (2018)

    CAS  Google Scholar 

  54. C. Zhao, R. Wang, Y. Zhang, L. Chen, T. Li, X. Deng, P. Zhang, X. Lu, Electrostatic force-driven anchoring of Ni(OH)2 nanocrystallites on single-layer MoS2 for high-performance asymmetric hybrid supercapacitors. Electrochim. Acta 320, 134591 (2019)

    CAS  Google Scholar 

  55. S. Kandula, K.R. Shrestha, N.H. Kim, J.H. Lee, Fabrication of a 3D hierarchical sandwich Co9S8/α-MnS@N–C@MoS2 nanowire architectures as advanced electrode material for high performance hybrid supercapacitors. Small 14(23), 1800291 (2018)

    Google Scholar 

  56. D. Chen, M. Lu, L. Li, D. Cai, J. Li, J. Cao, W. Han, Hierarchical core–shell structural NiMoO4@NiS2/MoS2 nanowires fabricated via an in situ sulfurization method for high performance asymmetric supercapacitors. J. Mater. Chem. A 7(38), 21759–21765 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

NJ acknowledges MHRD, Govt of India for providing the SRF grand to undertake this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chandra Bose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, N., Sethulakshmi, J.S. & Bose, A.C. Morphology-dependent electrochemical energy storage property of metallic molybdenum sulfide nanosheets. J Mater Sci: Mater Electron 31, 12684–12695 (2020). https://doi.org/10.1007/s10854-020-03820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03820-x

Navigation