Log in

Investigation of asymmetric degradation in electrical properties of a-InGaZnO thin-film transistor arrays as a function of channel width-to-length aspect ratio

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the effect of variation of the channel width-to-length aspect ratio on the negative bias stress instability and the impact of the source/drain contact resistance on the electrical properties of amorphous-InGaZnO (IGZO) thin-film transistor (TFT) arrays. An asymmetric degradation of the threshold voltage (Vth) was observed over a wide range of negative stress bias in the IGZO TFT arrays. The lowest ∆Vth of 0.8 V and good stability with an increase in stress time were observed for the array having the channel aspect ratio of ~ 1.5, whereas the highest ∆Vth of 5.2 V was observed for the array having the channel aspect ratio of ~ 2.5. The drain-induced barrier lowering (DIBL) mechanism and the transmission line method (TLM) were used to investigate this abnormal degradation. The maximum DIBL of 50.2 mV/V was calculated for the array having a channel width/length of 4.4/11 μm. Application of the TLM revealed a channel resistance of 10.4 kΩ μm at a small gate bias of 0.5 V. Degradation of the electrical properties was observed for the array having an aspect ratio of 2.5 owing to poor ohmic contact with the channel. This investigation suggests that proper selection of the aspect ratio is important in the design of small-scale TFT arrays, as it can help to reduce the degradation of the electrical properties at a smaller dimension. Short-channel effects such as electron trap** and parasitic resistances can be minimized via improvement of the bias stress instability by use of a width-to-length aspect ratio of ~ 1.5. The findings in this report are beneficial for designing ultra-high-definition active-matrix displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Lorenz et al., J. Phys. D 49, 433001 (2016)

    Article  Google Scholar 

  2. T.T. Trinh, K. Jang, S. Velumani, V.A. Dao, J. Yi, Mater. Sci. Semicond. Process. 38, 50 (2015)

    Article  CAS  Google Scholar 

  3. S. Kwon, J. Park, P.D. Rack, Electrochem. Solid-State Lett. 12, H278 (2009)

    Article  CAS  Google Scholar 

  4. S. Choi, M. Han, Appl. Phys. Lett. 100, 043503 (2012)

    Article  Google Scholar 

  5. T. Kim, J. Hur, S. Jeon, Semicond. Sci. Technol. 31, 055014 (2016)

    Article  Google Scholar 

  6. T.E. Taouririt, A. Meftah, N. Sengouga, M. Adaika, S. Chala, A. Meftah, Nanoscale 11, 23459 (2019)

    Article  Google Scholar 

  7. G. He, J. Gao, H. Chen, J. Cui, Z. Sun, X. Chen, A.C.S. Appl, Mater. Interfaces 6, 22013 (2014)

    Article  CAS  Google Scholar 

  8. T.E. Taouririt, A. Meftah, N. Sengouga, Appl. Nanosci. 8, 1865 (2018)

    Article  CAS  Google Scholar 

  9. D. Lin, X. Zheng, J. Yang, K. Li, J. Shao, Q. Zhang, J. Mater. Sci. 30, 12929 (2019)

    CAS  Google Scholar 

  10. C. Han, S. Kim, K. Kim, D. Baek, S. Kim, B. Choi, Jpn. J. Appl. Phys. 53, 08NG04 (2014)

    Article  Google Scholar 

  11. W.J. Kang, K.S. Kim, C.H. Ahn, S.W. Cho, D.E. Kim, B. Kim, H.K. Cho, Y. Kim, J. Mater. Sci. 28, 8231 (2017)

    CAS  Google Scholar 

  12. A. Abliz, D. Wan, J. Chen, L. Xu, J. He, Y. Yang, H. Duan, C. Liu, C. Jiang, H. Chen, T. Guo, L. Liao, IEEE Trans. Electron Devices 65, 2844 (2018)

    Article  CAS  Google Scholar 

  13. J. He, G. Li, Y. Lv, C. Wang, C. Liu, J. Li, D. Flandre, H. Chen, T. Guo, L. Liao, Adv. Electron. Mater. 5, 1900125 (2019)

    Article  Google Scholar 

  14. J. Li, L. Lu, Z. Feng, H.S. Kwok, M. Wong, Appl. Phys. Lett. 110, 142102 (2017)

    Article  Google Scholar 

  15. A.F. Paterson, T.D. Anthopoulos, Nat. Commun. 9, 5264 (2018)

    Article  CAS  Google Scholar 

  16. T. Hsieh, T. Chang, T. Chen, M. Tsai, Y. Chen, Y. Chung, H. Ting, C. Chen, Appl. Phys. Lett. 100, 232101 (2012)

    Article  Google Scholar 

  17. S. Lee, Y. Song, H. Park, A. Zaslavsky, D.C. Paine, Solid-State Electron. 135, 94–99 (2017)

    Article  CAS  Google Scholar 

  18. K. Liu, T. Chang, M. Wu, Y. Hung, P. Hung, T. Hsieh, W. Chou, A. Chu, S.M. Sze, B. Yeh, Appl. Phys. Lett. 104, 133503 (2014)

    Article  Google Scholar 

  19. S.C. Kim, Y.S. Kim, E.K. Yu, J. Kanicki, Solid State Electron. 111, 67 (2015)

    Article  CAS  Google Scholar 

  20. T. Hsieh, T. Chang, T. Chen, Y. Chen, M. Tsai, A. Chu, Y. Chung, H. Ting, C. Chen, IEEE Electron Device Lett. 34, 63 (2013)

    Article  CAS  Google Scholar 

  21. J. Song, J.H. Lim, B.D. Ahn, J. Lee, SID 2013 DIGEST 93, 7 (2013)

    Google Scholar 

  22. J. Lee, D.H. Kim, E.G. Lee, C.O. Jeong, US Patent 8946005, B2 3rd Feb, 2015

  23. E.N. Cho, J.H. Kang, C.E. Kim, P. Moon, I. Yun, IEEE Trans. Device Mater. Res. 11, 112 (2011)

    Article  CAS  Google Scholar 

  24. J. Jeon, S. Seo, H. Park, H. Choe, J. Seo, K. Park, S.K. Park, J. Nanosci. Nanotechnol. 13, 7535 (2013)

    Article  CAS  Google Scholar 

  25. A. Valletta, P. Gaucci, L. Mariucci, G. Fortunato, F. Templier, J. Appl. Phys. 104, 124511 (2008)

    Article  Google Scholar 

  26. C. Liu, Y. Xu, Y. Noh, Mater. Today 18, 79 (2015)

    Article  CAS  Google Scholar 

  27. J. Raja, K. Jang, N. Balaji, W. Choi, T.T. Trinh, J. Yi, Appl. Phys. Lett. 102, 083505 (2013)

    Article  Google Scholar 

  28. D. Wang, M. Furuta, Beilstein J. Nanotechnol. 10, 1125–1130 (2019)

    Article  CAS  Google Scholar 

  29. J. Raja, A study on improvement of electrical and stability characteristics of oxide based thin film transistors and non-volatile memory devices for high- definition flat panel displays. A Dissertation Submitted to Sungyngwan University, Korea (2016)

  30. D.C. Moschou, C.G. Theodorou, N.A. Hastas, A. Tsormpatzoglou, D.N. Kouvatsos, A.T. Vpotsas, C.A. Dimitriadis, J. Disp. Technol. 9, 747 (2013)

    Article  CAS  Google Scholar 

  31. M.F. AI-Mistarihi, A. Rjoub, N.R. AI-Taradeh, 25th International Conference on Microelectronics (ICM), p. 978 (2013)

  32. G. Baek, K. Abe, H. Kumomi, J. Kanicki, IEEE’s AM-FPD 19th International Workshop; p. 13 (2012)

  33. A. Cerdeira, M. Estrada, L.F. Marsal, J. Pallares, B. Iñiguez, Microelectron. Reliab. 63, 325 (2016)

    Article  CAS  Google Scholar 

  34. C. Jo, H. Bae, S. Jun, H. Choi, S. Hwang, D.H. Kim, D.M. Kim, B. Ahn, J. Lee, J. Song, SID 2013 DIGEST 44, 1070 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Samsung Electronics Co., Ltd., for their support and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Chel Cho or Junsin Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, K., Patil, V., Chavan, G.T. et al. Investigation of asymmetric degradation in electrical properties of a-InGaZnO thin-film transistor arrays as a function of channel width-to-length aspect ratio. J Mater Sci: Mater Electron 31, 9826–9834 (2020). https://doi.org/10.1007/s10854-020-03527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03527-z

Navigation