Log in

Fabrication and characterization of electrospun cadmium sulfide-poly(aryl ether ketone) hybrid nanofibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured CdS/sulfonated poly(aryl ether ketone) (CdS/SPAEK) hybrid nanofiber material was synthesized through the electrospinning technique. The hyperbranched poly(aryl ether ketone) and sulfonated poly(aryl ether ketone) were used as ligand and matrix, respectively. The optical properties of the hybrid nanofibers were characterized by photoluminescence and ultraviolet-visible (UV–Vis) spectrophotometry. And the results showed that the novel nanofibers had obvious luminescence properties. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) spectrophotometry were also used to investigate the morphology and structure of the nanofibers. And the thermal properties of CdS/SPAEK hybrid nanofibers were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Due to the addition of CdS nanocrystals, the hybrid nanofibers exhibited excellent optical properties and good heat resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.P. Alivisatos, Science. 27, 1933–1997 (1996)

    Google Scholar 

  2. C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed. Chem. Rev. 105, 1025–1102 (2005)

    Article  CAS  Google Scholar 

  3. S. Muniyappan, T. Solaiyammal, B. Gomathi Thanga Keerthana, P. Vivek, P. Murugakoothan. J. Mater. Sci-Mater. El. 28, 11317–11324 (2017)

    Article  CAS  Google Scholar 

  4. A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, R. Mahiou, ACS Appl. Mater. Inter. 6, 252–258 (2014)

    Article  CAS  Google Scholar 

  5. P. Wu, X. P. Yan. Chem. Soc. Rev. 42, 5489–5521 (2013)

    Article  CAS  Google Scholar 

  6. L.N. Chen, J. Wang, W.T. Li, H. Y. Han. Chem. Commun. 48, 4971–4973 (2012)

    Article  CAS  Google Scholar 

  7. J. Tan, Y. Shen, Z.K. Zhang, Q.H. Wu, F. Gu, M. Cao, L.J. Wang, J. Mater. Sci-Mater. El. 26, 2145–2150 (2015)

    Article  CAS  Google Scholar 

  8. M.A. Boles, M. Engel, D. V. Talapin. Chem. Rev. 116, 11220–11289 (2016)

    Article  CAS  Google Scholar 

  9. X.L. Dai, Y.Z. Deng, X.G. Peng, Y.Z. **, Adv. Mater. 29, 1607022 (2017)

    Article  Google Scholar 

  10. K.Y. Zhang, S.Z. Lv, Z.Z. Lin, D. P. Tang. Biosens. Bioelectron. 95, 34–40 (2017)

    Article  CAS  Google Scholar 

  11. M. Salavati-Niasari, A. Sobhani, High. Temp. Mat. Pr-Isr. 31, 157–162 (2012)

    CAS  Google Scholar 

  12. M. Salavati-Niasari, A. Sobhani, S. Khoshrooz, N. Mirzanasiri. J. Clust. Sci. 25, 937–947 (2014)

    Article  CAS  Google Scholar 

  13. A. Sobhani, M. Salavati-Niasari, Superlattice. Microst. 59, 1–12 (2013)

    Article  CAS  Google Scholar 

  14. S. Dagher, Y. Haik, N. Tit, A. Ayesh, J. Mater. Sci-Mater. El. 27, 3328–3340 (2016)

    Article  CAS  Google Scholar 

  15. Z.L. Wang, Adv. Mater. 12, 1295–1298 (2000)

    Article  CAS  Google Scholar 

  16. C.J. Barrelet, Y. Wu, D.C. Bell, C. M. Lieber. J. Am. Chem. Soc. 125, 11498–11499 (2003)

    Article  CAS  Google Scholar 

  17. T.Y. Zhai, X.S. Fang, Y. Bando, B. Dierre, B.D. Liu, H.B. Zeng, X.J. Xu et al., Adv. Funct. Mater. 19, 2423–2430 (2009)

    Article  CAS  Google Scholar 

  18. D.D. Ma, J.W. Shi, Y.J. Zou, Z.Y. Fan, X. Ji, C.M. Niu, ACS Appl. Mater. Inter. 9, 25377–25386 (2017)

    Article  CAS  Google Scholar 

  19. P.V. Kamat. J. Phys. Chem. C 112, 18737–18753 (2008)

    Article  CAS  Google Scholar 

  20. J. Kwak, W.K. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S.W. Kang, S. Weber et al., Adv. Mater. 21, 5022–5026 (2009)

    Article  CAS  Google Scholar 

  21. B.X. Liu, C.Y. Tong, L.J. Feng, C.Y. Wang, Y. He, C. L. Lv. Chem. Eur. J. 20, 2132–2137 (2014)

    Article  CAS  Google Scholar 

  22. C. Carrillo-Carrion, A.I. Bocanegra, B. Arnaiz, N. Feliu, D.C. Zhu, W.J. Parak, ACS. Nano. 13, 4631–4639 (2019)

    Article  CAS  Google Scholar 

  23. T. Zhai, X. Fang, Y. Bando, Q. Liao, X. Xu, H. Zeng, Y. Ma, J. Yao, D. Golberg, ACS. Nano. 3, 949–959 (2009)

    Article  CAS  Google Scholar 

  24. Y. Liang, C. Zhen, D. Zou, D. Xu, J. Am. Chem. Soc. 126, 16338–16339 (2004)

    Article  CAS  Google Scholar 

  25. Y. Li, S. Hu, G. Peng, S. Lu. J. Phys. Chem. C 113, 9352–9358 (2009)

    Article  CAS  Google Scholar 

  26. M. Li, J. Zhang, H. Zhang, Y. Liu, C. Wang, X. Xu, Y. Tang, B. Yang, Adv. Funct. Mater. 17, 3650–3656 (2007)

    Article  Google Scholar 

  27. M. Bashouti, W. Salalha, M. Brumer, E. Zussman, E. Lifshitz. Chem. Phys. Chem. 7, 102–106 (2006)

    Article  CAS  Google Scholar 

  28. S.Y. Min, J. Bang, J. Park, C.L. Lee, S.W. Lee, J.J. Park, U. Jeong et al., RSC. Adv. 4, 11585–11589 (2014)

    Article  CAS  Google Scholar 

  29. Y.N. Zhang, X.X. Hu, D. Jiang, Plast. Rubber. Compos. 46, 1–8 (2017)

    Article  Google Scholar 

  30. D.A. Fitch, B.K. Hoffmeister, J. Ana. J. Mater. Sci. 45, 3768–3777 (2010)

    Article  CAS  Google Scholar 

  31. J.W. Chon, X. Yang, S.M. Lee, Y.J. Kim, I.S. Jeon, J.Y. Jho, D. J. Chung. Polymers. 11, 1803 (2019)

    CAS  Google Scholar 

  32. D. Liu, Y.J. **e, S. Li, X.C. Han, H.B. Zhang, Z. Chen et al., ACS. Appl. Energ. Mater. 2, 1646–1656 (2019)

    Article  CAS  Google Scholar 

  33. M. Strukelj, A. S. Hay. Macromolecules. 24, 6870–6871 (1991)

    Article  CAS  Google Scholar 

  34. X.J. Li, S.L. Zhang, H. Wang et al., Polym. Lnt. 59, 1360–1366 (2010)

    CAS  Google Scholar 

  35. Y.M. Chen, X.L. Ji, S.C. Jiang et al., Colloid. Polym. Sci. 281, 386–389 (2003)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Department of Education of Jilin Province “13th Five-Year Plan” Project for Science and Technology (JJKH20200743KJ) and Jilin Province Science and Technology Development Project (20190103023JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Fabrication and characterization of electrospun cadmium sulfide-poly(aryl ether ketone) hybrid nanofibers. J Mater Sci: Mater Electron 31, 9475–9480 (2020). https://doi.org/10.1007/s10854-020-03487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03487-4

Navigation