Log in

Evolution of physical properties of diamond nanoparticles deposited by DC-PECVD method after post deposition annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High quality diamond nanoparticles were synthesized by plasma enhanced chemical vapor deposition (PECVD) method on steal 304 substrates. Effects of post deposition annealing in the vacuum at temperature of 100 °C, 200 °C, and 300 °C was studied. Investigations of phase structures and surface morphology of diamond materials were examined by X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy (SEM) and Raman spectroscopy. The XRD spectrum of the annealed samples showed the well-defined crystalline structure of the diamond nanoparticles with a more intense peak at 100 °C. Post annealing of the samples at higher temperature transforms the diamond structure to graphite phase with is reduced of the film’s crystalline quality. A shift in preferred diamond growth orientation at higher annealing temperature from (111) to (220) was happened. Remarkable differences in the morphology were evident in the SEM images of annealed samples. The high concentration and distribution of the diamond nanocrystals with crystallite size of lower than 50 nm were obtained on the surfaces of the annealed sample at 100 °C. Raman spectra showed a more intense diamond peak for annealed sample at 100 °C and graphitic and non-diamond components for annealed sample at higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009)

    CAS  Google Scholar 

  2. M. Prato, J. Mater. Chem. 7, 1097 (1997)

    CAS  Google Scholar 

  3. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, J. Mater. Chem. 21, 15872 (2011)

    CAS  Google Scholar 

  4. P.J.F. Harris, Solid State Mater. Sci. 30, 235 (2005)

    CAS  Google Scholar 

  5. J. Robertson, Mater. Sci. Eng. 37, 129 (2002)

    Google Scholar 

  6. T. Lühmann, R. Wunderlich, R.S. Grund, J.B. Quiquia, P. Esquinazi, M. Grundmann, J. Meijer 121, 512 (2017)

    Google Scholar 

  7. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002)

    Google Scholar 

  8. A.C. Ferrari, John Robertson. Phil. Trans. R. Soc. Lond. A 362, 2477 (2004)

    CAS  Google Scholar 

  9. R. Kalish, T. Bernsteins, B. Shapiro, A. Talmi, Radiat. Eff. 52, 153 (1980)

    CAS  Google Scholar 

  10. D. Rommel, F. Scherm, Ch. Kuttner, U. Glatzel, Surf. Coat. Technol. 291, 62 (2016)

    CAS  Google Scholar 

  11. B. Aldwell, Sh Yin, K.A. McDonnell, D. Trimble, T. Hussain, R. Lupoi, Scr. Mater. 115, 10 (2016)

    CAS  Google Scholar 

  12. M.S. You, F.C.N. Hong, Y.R. Jeng, S.M. Huang, Diam. Relat. Mater. 18, 155 (2009)

    CAS  Google Scholar 

  13. H. Zeng, N. Moldovan, G. Catausan, Diam. Relat. Mater. 91, 165 (2019)

    CAS  Google Scholar 

  14. P.A. Nistor, P.W. May, J. R. Soc. Interface 14, 134 (2017)

    Google Scholar 

  15. H. Umezawa, S. Shikata, T. Funaki, Appl. Phys. Express 6, 011302 (2013)

    Google Scholar 

  16. H. Kawarada, H. Tsuboi, T. Naruo et al., Appl. Phys. Lett. 105, 013510 (2014)

    Google Scholar 

  17. T. Iwasaki, Y. Hoshino, K. Tsuzuki et al., Appl. Phys. Express 5, 091301 (2012)

    Google Scholar 

  18. K. Kodama, T. Funaki, H. Umezawa et al., IEICE Electron. Express 7, 1246 (2010)

    Google Scholar 

  19. M. Dutta, F.A.M. Koeck, W. Li et al., IEEE Electron Dev. Lett. 38, 600 (2017)

    CAS  Google Scholar 

  20. H. Umezawa, T. Matsumoto, S. Shikata, IEEE Electron Device Lett. 35, 1112 (2014)

    CAS  Google Scholar 

  21. M. Suzuki, T. Sakai, T. Makino et al., Phys. Status Solidi A 210, 2031 (2013)

    Google Scholar 

  22. D.E. Scott, Ind. Diam. Rev. 66, 48 (2006)

    Google Scholar 

  23. A. Grill, Diam. Relat. Mater. 8(2–5), 428 (1999)

    CAS  Google Scholar 

  24. Y. Fedortchouk, Earth-Sci. Rev. 193, 45 (2019)

    CAS  Google Scholar 

  25. A.C. Taylor, B. Vagaska, R. Edgington, C. Hebert, P. Ferretti, P. Bergonzo, R.B. Jackman, J. Neural Eng. 12, 066016 (2015)

    Google Scholar 

  26. T. Sharda, M.M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno, Diam. Relat. Mater. 10, 561 (2001)

    CAS  Google Scholar 

  27. D.B. Franta, L. Zajickova, M. Karaskova, O. Jasek, D. Necas, P. Klapetek, M. Valtr, Diam. Relat. Mater. 17, 1278 (2008)

    CAS  Google Scholar 

  28. A. Grill, Diam. Relat. Mater. 10, 234 (2001)

    CAS  Google Scholar 

  29. Y. Liou, R. Weimer, D. Knight, R. Messier, Appl. Phys. Lett. 56, 437 (1990)

    CAS  Google Scholar 

  30. J.H. Sui, W. Cai, Diam. Relat. Mater. 15, 1720 (2006)

    CAS  Google Scholar 

  31. C. Popov, W. Kulisch, P.N. Gibson, G. Ceccone, M. Jelinek, Diam. Relat. Mater. 13, 1371 (2004)

    CAS  Google Scholar 

  32. S. Logothetidis, Appl. Phys. Lett. 69, 158 (1996)

    CAS  Google Scholar 

  33. K. Nakamura, S. Yamashita, T. Tojo, M. Mitsuishi, K. Kataoka, M. Yoshimoto, Diam. Relat. Mater. 16, 1765 (2007)

    CAS  Google Scholar 

  34. YuA Mankelevich, P.W. May, Diam. Relat. Mater. 17, 1021 (2008)

    CAS  Google Scholar 

  35. O. Matsumoto, H. Toshima, Y. Kanzaki, Thin Solid Films 128, 341 (1985)

    CAS  Google Scholar 

  36. S. Shams, Z. Khalaj, M. Ghoranneviss, Stud. UBB Chem. LVII 3, 167 (2012)

    Google Scholar 

  37. K.C. Yang, Y.B. **a, L.J. Wang, J.M. Liu, I.F. Su, R. Xu, H.Y. Peng, W.M. Shi, Trans. Nonferr. Met. Soc. China 16, 321 (2006)

    Google Scholar 

  38. D. Dastan, S. Leila Panahi, A.P. Yengntiwar, A.G. Banpurkar, Adv. Sci. Lett. 22(4), 950 (2016)

    Google Scholar 

  39. D.C. Tsai, Z.C. Chang, B.H. Kuo, C.T. Tsao, E.C. Chen, F.S. Shieu, J. Alloys Compd. 622, 446 (2015)

    CAS  Google Scholar 

  40. S.A.A. Terohid, S. Heidari, A. Jafari, S. Asgary, Appl. Phys. A 124(8), 567 (2018)

    Google Scholar 

  41. S.K. Biswas, J. Baeg, S. Moon, K. Kong, W. So, J. Nanopart. Res. 14, 1 (2012)

    Google Scholar 

  42. H. Metin, M. Ari, S. Erat, S. Durmus, M. Bozoklu, A. Braun, J. Mater. Res. 25, 189 (2010)

    CAS  Google Scholar 

  43. E. Anastassakis, J. Appl. Phys. 86, 249 (1999)

    CAS  Google Scholar 

  44. S. Prawer, R.J. Nemanich, Philos. Trans. A Math. Phys. Eng. Sci. 362, 2537 (2004)

    CAS  Google Scholar 

  45. R.A. Evarestov, Quantum Chemistry of Solids (Springer, Berlin, 2012), pp. 7–46

    Google Scholar 

  46. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)

    CAS  Google Scholar 

  47. S. Bhargava, H.D. Bist, S. Sahli, M. Aslam, H.B. Tripathi, Appl. Phys. Lett. 67, 1706 (1995)

    CAS  Google Scholar 

  48. Y. Einaga, G. Kim, S. Park, A. Fujishima, Diam. Relat. Mater. 10, 306 (2001)

    CAS  Google Scholar 

  49. X. Bian, Q. Chen, Y. Zhang, L. Sang, W. Tang, Surf. Coat. Technol. 202, 5383 (2008)

    CAS  Google Scholar 

  50. A. Jafari, M. Ghoranneviss, M.R. Hantehzadeh, A. Boochani, J. Chem. Res. 40(1), 40 (2016)

    CAS  Google Scholar 

  51. S. Neuville, Surf. Coat. Technol. 206, 703 (2011)

    CAS  Google Scholar 

  52. M.H. Grimsditch, E. Anastassakis, M. Cardona, Phys. Rev. B 18, 901 (1978)

    CAS  Google Scholar 

  53. J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. **e, Appl. Phys. Lett. 69, 200 (1996)

    CAS  Google Scholar 

  54. J.W. Ager III, D.K. Veirs, G.M. Rosenblatt, Phys. Rev. B 43, 6491 (1991)

    CAS  Google Scholar 

  55. T.A. Nachal’naya, V.D. Andreyev, E.V. Gabrusenok, Diam. Relat. Mater. 3, 1325 (1994)

    Google Scholar 

  56. P. Olivero, G. Amato, F. Bellotti, O. Budnyk, E. Colombo, M. Jaksic, C. Manfredotti, Z. Pastuovi, F. Picollo, N. Skukan, M. Vannoni, E. Vittone, Diam. Relat. Mater. 18, 870 (2009)

    CAS  Google Scholar 

  57. A.K. Singh, N. Kumari, S.K. Mukherjee, P.K. Barhai, IJRRAS 14, 3 (2013)

    Google Scholar 

  58. A. José, A.M. Luceño-Sánchez, R. Díez-Pascual, Peña Capilla. Int. J. Mol. Sci. 20, 976 (2019)

    Google Scholar 

  59. D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci.: Mater. Electron. 25, 3473 (2014)

    CAS  Google Scholar 

  60. P.A. Nistor, P.W. May, J. R. Soc. Interface 14, 20170382 (2017)

    Google Scholar 

  61. P.W. May, Y.A. Mankelevich, J. Phys. Chem. C 112, 12432 (2008)

    CAS  Google Scholar 

  62. D. Dastan, Appl. Phys. A 123, 1 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asgary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgary, S., Jafari, A., Ebrahminejad, Z. et al. Evolution of physical properties of diamond nanoparticles deposited by DC-PECVD method after post deposition annealing. J Mater Sci: Mater Electron 30, 20451–20458 (2019). https://doi.org/10.1007/s10854-019-02389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02389-4

Navigation