Log in

The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2Tx nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sandwich-like structure of the MoS2/TiO2/Ti3C2Tx nanocomposites were synthesized by a hydrothermal method. The corresponding phases, microstructure, and electromagnetic parameters were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and vector network analyzer. The results indicated that the Ti3C2Tx can be partially converted to TiO2 nanocrystals during the process of synthesized MoS2, the complex permittivity of MoS2/TiO2/Ti3C2Tx nanocomposite was increased after deposited MoS2, and therefore the electromagnetic and microwave absorbing performance was affected. When the thickness of MoS2/TiO2/Ti3C2Tx absorber was 2.5 mm, the corresponding absorption bandwidth (< −10 dB) was 2.6 GHz. The enhanced absorbing performance was attributed to the good impedance matching property, high attenuation constant and special sandwich-like structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik et al., Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram. Int. 44, 13520–13529 (2018)

    Article  Google Scholar 

  2. H. Wang, D. Zhu, X. Wang, F. Luo, Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites. Compos. A Appl. Sci. Manuf. 93, 10–17 (2017)

    Article  Google Scholar 

  3. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur et al., Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018)

    Article  Google Scholar 

  4. H. Wang, D. Zhu, W. Zhou, F. Luo, Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co. J. Magn. Magn. Mater. 393, 445–451 (2015)

    Article  Google Scholar 

  5. L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019)

    Article  Google Scholar 

  6. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov et al., Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822–12827 (2017)

    Article  Google Scholar 

  7. V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina et al., Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3+ and Ga3+; x  =  0.1–1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)

    Article  Google Scholar 

  8. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko et al., Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 462, 127–135 (2018)

    Article  Google Scholar 

  9. L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye et al., Macroscopic bioinspired graphene sponge modified with in situ grown carbon nanowires and its electromagnetic properties. Carbon 111, 94–102 (2017)

    Article  Google Scholar 

  10. J. Li, Y. **e, W. Lu, T.-W. Chou, Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129, 76–84 (2018)

    Article  Google Scholar 

  11. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016)

    Article  Google Scholar 

  12. D. Zhang, J. Chai, J. Cheng, Y. Jia, X. Yang, H. Wang et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018)

    Article  Google Scholar 

  13. M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band. ACS Appl. Mater. Interfaces 8, 21011–21019 (2016)

    Article  Google Scholar 

  14. H. Luo, W. Feng, C. Liao, L. Deng, S. Liu, H. Zhang et al., Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption. J. Appl. Phys. 123, 104103 (2018)

    Article  Google Scholar 

  15. P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. A Appl. Sci. Manuf. 115, 371–382 (2018)

    Article  Google Scholar 

  16. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov et al., Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mater. Sci. 52, 5345–5358 (2017)

    Article  Google Scholar 

  17. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, O.V. Lozitsky, O.I. Prokopov, O.A. Lazarenko et al., Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite. Mol. Cryst. Liq. Cryst. 661, 68–80 (2018)

    Article  Google Scholar 

  18. Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 7, 26226–26234 (2015)

    Article  Google Scholar 

  19. W. Hongyu, J. Peipeng, The electromagnetic and microwave absorbing properties of MoS2/carbonyl iron@SiO2. Mater. Res. Express. 5, 116301 (2018)

    Article  Google Scholar 

  20. W. Zhang, X. Zhang, Y. Zheng, C. Guo, M. Yang, Z. Li et al., Preparation of Polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 1, 5865–5875 (2018)

    Article  Google Scholar 

  21. E. Yang, X. Qi, R. **e, Z. Bai, Y. Jiang, S. Qin et al., Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: synthesis, and enhanced microwave absorption properties. Appl. Surf. Sci. 442, 622–629 (2018)

    Article  Google Scholar 

  22. Y. Wang, Y. Chen, X. Wu, W. Zhang, C. Luo, J. Li, Fabrication of MoS2-graphene modified with Fe3O4 particles and its enhanced microwave absorption performance. Adv. Powder Technol. 29, 744–750 (2018)

    Article  Google Scholar 

  23. L. Liu, S. Zhang, F. Yan, C. Li, C. Zhu, X. Zhang et al., Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces. 10, 14108–14115 (2018)

    Article  Google Scholar 

  24. Y. Tong, M. He, Y. Zhou, S. Nie, X. Zhong, L. Fan et al., Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption. ACS Sustain. Chem. Eng. 6, 8212–8222 (2018)

    Article  Google Scholar 

  25. C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016)

    Article  Google Scholar 

  26. M. Zheng, R. Guo, Z. Liu, B. Wang, L. Meng, F. Li et al., MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J. Alloys Compd. 735, 1262–1270 (2018)

    Article  Google Scholar 

  27. A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017)

    Article  Google Scholar 

  28. W. Feng, H. Luo, S. Zeng, C. Chen, L. Deng, Y. Tan et al., Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability. Mater. Chem. Front. 2, 2320–2326 (2018)

    Article  Google Scholar 

  29. Y. Qing, W. Zhou, F. Luo, D. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42, 16412–16416 (2016)

    Article  Google Scholar 

  30. G.R. Berdiyorov, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. EPL 111, 67002 (2015)

    Article  Google Scholar 

  31. C. Hu, Z. Mou, G. Lu, N. Chen, Z. Dong, M. Hu et al., 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 15, 13038–13043 (2013)

    Article  Google Scholar 

  32. C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    Article  Google Scholar 

  33. H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces. 7, 9776–9783 (2015)

    Article  Google Scholar 

  34. D. Sun, Q. Zou, Y. Wang, Y. Wang, W. Jiang, F. Li, Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6, 6557–6562 (2014)

    Article  Google Scholar 

  35. Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li, S. Du et al., Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 7, 24698–24708 (2017)

    Article  Google Scholar 

  36. H. Yang, J. Dai, X. Liu, Y. Lin, J. Wang, L. Wang et al., Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 200, 179–186 (2017)

    Article  Google Scholar 

  37. H. Wang, D. Zhu, Double layered radar absorbing structures of Silicon Carbide fibers/polyimide composites. Synth. Met. 246, 213–219 (2018)

    Article  Google Scholar 

  38. H. Wang, J. Cui, Preparation of NiCo2O4 with different morphologies and its effect on absorbing properties. Mater. Lett. 236, 465–467 (2019)

    Article  Google Scholar 

  39. W. Liu, H. Li, Q. Zeng, H. Duan, Y. Guo, X. Liu et al., Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A. 3, 3739–3747 (2015)

    Article  Google Scholar 

  40. M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, R.K.Y. Li, Two-dimensional materials: emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys. 13, 138113 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Natural Science Foundation of Qinghai Province under Grant No. 2018-ZJ-923Q, the Qinghai Provincial Innovation Platform Program (No. 2017-ZJ-Y17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ma, H. The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2Tx nanocomposites. J Mater Sci: Mater Electron 30, 15250–15256 (2019). https://doi.org/10.1007/s10854-019-01897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01897-7

Navigation