Log in

Anatase TiO2 nanowires with nanoscale whiskers for the improved photovoltaic performance in dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 as an efficient electron transfer material has been widely utilized in dye-sensitized solar cells (DSSCs), and the morphology of TiO2 plays a decisive role in the performance of DSSCs. However, one-dimensional TiO2 nanowires, which are generally used as the efficient electron transport layers, have small specific surface area and low dye loading. Here, we introduce an effective and reproducible one-step hydrothermal method to prepare TiO2 nanowire with nanoscale whiskers. The synthetic sample was characterized by the field emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction. TiO2 nanowire with nanoscale whiskers has a high light scattering performance and high dye loading capacity. This novel TiO2 nanowire show a power conversion efficiency (PCE) of 4.12%, which is close to the benchmark of P25 nanoparticle usually used in DSSC fabrication. The PCE of DSSC-3 using TiO2 nanowire with nanoscale whiskers and commercial P25 double-layer photoanode has a PCE of 5.98%, showing an increase of 11.98% when compared with DSSC-2 based on pure P25 photoanode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. O’regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. M. Grätzel, J. Photochem. Photobiol., A 164, 3–14 (2004)

    Article  Google Scholar 

  3. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285, 692–698 (1999)

    Article  Google Scholar 

  4. M. Grätzel, J. Photochem. Photobiol. 4, 145–153 (2003)

    Article  Google Scholar 

  5. J.G. Wang, T.D. Chen, J. Power Sources 267, 136–139 (2014)

    Article  Google Scholar 

  6. F. Svauage, J.D. Decoppet, M. Zhang, S.M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang, M. Gratzel, J. Am. Chem. Soc. 133, 9304–9310 (2011)

    Article  Google Scholar 

  7. F. Rezvani, E. Parvazian, S.A. Hosseini, Bull. Mater. Sci. 39, 1397–1402 (2016)

    Article  Google Scholar 

  8. E. Ramasamy, J. Lee, Chem. Commun. 46, 2136–2138 (2010)

    Article  Google Scholar 

  9. M.A.M. Al-Alwani, A.B. Mohamad, N.A. Ludin, A.A.H. Kadhum, K. Sopian, Renew. Sust. Energy Rev. 65, 183–213 (2016)

    Article  Google Scholar 

  10. Z.G. Chen, H. Yang, X.H. Li, F.Y. Li, T. Yi, C.H. Huang, J. Mater. Chem. 17, 1602–1607 (2007)

    Article  Google Scholar 

  11. A.C. Santulli, C. Koenigsmann, A.L. Tiano, D. Derosa, S.S. Wong, Nanotechnology 22, 245402 (2011)

    Article  Google Scholar 

  12. J.Y. Liao, J.W. He, H. Xu, D.B. Kuang, C.Y. Su, J. Mater. Chem. 22, 7910–7918 (2012)

    Article  Google Scholar 

  13. N.G. Park, J.V.D. Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989–8994 (2000)

    Article  Google Scholar 

  14. R. Cherrington, D.J. Hughes, S. Senthilarasu, V. Goodship, Energy Technol. 3, 866–870 (2015)

    Article  Google Scholar 

  15. N. Tasić, Z.M. Stanojević, Z. Branković, U. Lačnjevac, V. Ribić, M. Žunić, T. Novaković, M. Podlogar, G. Branković, Electrochim. Acta 210, 606–614 (2016)

    Article  Google Scholar 

  16. F.I.M. Fazli, M.K. Ahmad, C.F. Soon, N. Nafarizal, A.B. Suriani, A. Mohamed, M.H. Mamat, M.F. Malek, M. Shimomura, K. Murakami, Optik 140, 1063–1068 (2017)

    Article  Google Scholar 

  17. A.S. Shikoh, Z. Ahmad, F. Touati, R.A. Shakoor, S.A. Al-Muhtaseb, Ceram. Int. 43, 10540–10545 (2017)

    Article  Google Scholar 

  18. B.X. Lei, P. Zhang, M.L. **e, Y. Li, S.N. Wang, Y.Y. Yu, W. Sun, Z.F. Sun, Electrochim. Acta 173, 497–505 (2015)

    Article  Google Scholar 

  19. X.Y. Liu, J. Fang, Y. Liu, T. Lin, Front. Mater. Sci. 10, 225–237 (2016)

    Article  Google Scholar 

  20. L. Zhao, C. Zhong, Y. Wang, S. Wang, B. Dong, L. Wan, J. Power Sources 292, 49–57 (2015)

    Article  Google Scholar 

  21. Y. Akila, N. Muthukumarasamy, S. Agilan, T.K. Mallick, S. Senthilarasu, D. Velauthapillai, Opt. Mater. 58, 76–83 (2016)

    Article  Google Scholar 

  22. J.Y. Liao, B.X. Lei, D.B. Kuang, C.Y. Su, Energy Environ. Sci. 4, 4079–4085 (2011)

    Article  Google Scholar 

  23. Z.J. Cui, K.Y. Zhang, G.Y. **ng, Y.Q. Feng, S.X. Meng, Front. Chem. Sci. Eng. 11, 395–404 (2017)

    Article  Google Scholar 

  24. Y.F. Zhu, L. Zhou, Y.B. Lin, Y.W. Dong, C.J. Pan, Ceram. Int. 44, 5692–5698 (2018)

    Article  Google Scholar 

  25. X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781–3786 (2008)

    Article  Google Scholar 

  26. F. Sauvage, F.D. Fonzo, A.L. Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, C.E. Bottani, P. Comte, M. Grätzel, Nano Lett. 10, 2562–2567 (2010)

    Article  Google Scholar 

  27. W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Sci. Rep. 3, 1352 (2013)

    Article  Google Scholar 

  28. J. Qu, G.R. Li, X.P. Gao, Energy Environ. Sci. 3, 2003–2009 (2010)

    Article  Google Scholar 

  29. H.X. Wang, M.N. Liu, M. Zhang, P. Wang, H. Miura, Y. Cheng, J. Bell, Phys. Chem. Chem. Phys. 13, 17359–17366 (2011)

    Article  Google Scholar 

  30. D.K. Roh, W.S. Chi, H. Jeon, S.J. Kim, J.H. Kim, Adv. Funct. Mater. 24, 379–386 (2014)

    Article  Google Scholar 

  31. D.K. Roh, W.S. Chi, S.H. Ahn, H. Jeon, J.H. Kim, ChemSusChem 6, 1384–1391 (2013)

    Article  Google Scholar 

  32. F. Shao, J. Sun, L. Gao, S. Yang, J. Luo, J. Mater. Chem. 22, 6824–6830 (2012)

    Article  Google Scholar 

  33. M.J. Bierman, S. **, Energy Environ. Sci. 2, 1050–1059 (2009)

    Article  Google Scholar 

  34. H. Wang, B. Li, J. Gao, M. Tang, H.B. Feng, J.H. Li, L. Guo, CrystEngComm 14, 5177–5181 (2012)

    Article  Google Scholar 

  35. X. Wu, G.Q. Lu, L. Wang, Energy Environ. Sci. 4, 3565–3572 (2011)

    Article  Google Scholar 

  36. K. Bourikas, C. Kordulis, A. Lycourghiotis, Chem. Rev. 114, 9754–9823 (2014)

    Article  Google Scholar 

  37. X.Y. Tao, Y.M. Wang, X. Zhang, H.X. Sun, Q.S. Zhang, L.Y. Niu, J. Liu, X.F. Zhou, J. Alloy. Compd. 631, 202–208 (2015)

    Article  Google Scholar 

  38. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083–9118 (2011)

    Article  Google Scholar 

  39. B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, D.Y. Kim, J. Phys. Chem. C 113, 21453–21457 (2009)

    Article  Google Scholar 

  40. P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphrey-Baker, M. Grätzel, J. Phys. Chem. B 107, 14336–14341 (2003)

    Article  Google Scholar 

  41. K.L. Lv, J.G. Yu, L.Z. Cui, S.L. Chen, M. Li, J. Alloy. Compd. 509, 4557–4562 (2011)

    Article  Google Scholar 

  42. K.M. Guo, M.Y. Li, X.L. Fang, L.H. Bai, M.D. Luoshan, F.P. Zhang, X.Z. Zhao, J. Power Sources 264, 35–41 (2014)

    Article  Google Scholar 

  43. J. Qian, P. Liu, Y. **ao, Y. Jiang, Y. Cao, X. Ai, H. Yang, Adv. Mater. 21, 3663–3667 (2009)

    Article  Google Scholar 

  44. L.Y. Niu, Q.S. Zhang, J. Liu, J. Qian, X.F. Zhou, J. Alloy. Compd. 656, 863–870 (2016)

    Article  Google Scholar 

  45. Q. Wang, J.E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945–14953 (2005)

    Article  Google Scholar 

  46. M. Adachi, M. Sakamoto, J.T. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B 110, 13872–13880 (2006)

    Article  Google Scholar 

  47. Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.G. Park, K. Kim, W.I. Lee, Adv. Mater. 21, 3668–3673 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Natural Science Foundation of China (No. 21676146), the Financial Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ngfu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cai, W., Lv, Y. et al. Anatase TiO2 nanowires with nanoscale whiskers for the improved photovoltaic performance in dye-sensitized solar cells. J Mater Sci: Mater Electron 30, 14036–14044 (2019). https://doi.org/10.1007/s10854-019-01768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01768-1

Navigation