Log in

Electrical properties of thin silicon oxides grown at room temperature by ion beam sputtering technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal-oxide-semiconductor capacitors with 15 nm of silicon oxide deposited by ion beam sputtering on Si substrates were analyzed using current–voltage and capacitance–voltage measurements. A large Fowler–Nordheim conduction zone between a threshold field of 5 MV·cm−1 and a breakdown field of 12.5 MV·cm−1 was established. Hysteresis measurements led to conclude that a few amount of charge is stored in the bulk of the dielectric. Interface trap density was found to be very close to that of thermally grown Si oxide with a midgap value of 3.3 × 1010 cm−2·eV−1. Fowler–Nordheim injections using a constant current density were used to study the build-up of trapped charge in the bulk oxide. Hence, the normalized centroid of the trapped charge distribution has been located close to the metal electrode. Only one trap was extracted from the simulation of experimental data with a saturated trap density among the lowest reported for Si/SiO2 systems of NT = 1.85 × 1012 cm−2 and a capture cross section σ = 2.9 × 10−16 cm2. We demonstrated that a thin and reliable gate oxide with a high electrical quality can be achieved on Si by ion beam sputtering deposition at room temperature. Such an oxide takes its place in technologies where a low thermal budget is required e.g. system-on-panel technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Cao, T. Zhao, K.C. Saraswat, J.D. Plummer, IEEE Electron Device Lett. 15, 304 (1994)

    Article  Google Scholar 

  2. N.-I. Lee, J.-W. Lee, C.-H. Han, Jpn. J. Appl. Phys. 38, 2215 (1999)

    Article  Google Scholar 

  3. N.-I. Lee, J.-W. Lee, H.-S. Kim, C.-H. Han, IEEE Electron Device Lett. 20, 15 (1999)

    Article  Google Scholar 

  4. J.-H. Oh, H.-J. Chung, N.-I. Lee, C.-H. Han, IEEE Electron Device Lett. 21, 304 (2000)

    Article  Google Scholar 

  5. P.-T. Liu, C.S. Huang, C.W. Chen, Electrochem. Solid-State Lett. 10, J89 (2007)

    Article  Google Scholar 

  6. M.-F. Hung, Y.-C. Wu, J.-H. Chiang, J.-H. Chen, L.-C. Chen, J. Nanosci. Nanotechnol. 11, 10419 (2011)

    Article  Google Scholar 

  7. K. Murata, N. Miyatake, Y. Mori, H. Tachibana, Y. Uraoka, T. Fuyuki, ECS Trans. 3, 101 (2006)

    Article  Google Scholar 

  8. N.-I. Lee, J.-W. Lee, S.-H. Hur, H.-S. Kim, C.-H. Han, IEEE Electron Device Lett. 18, 486 (1997)

    Article  Google Scholar 

  9. J.-W. Lee, N.-I. Lee, C.-H. Han, IEEE Electron Device Lett. 19, 458 (1998)

    Article  Google Scholar 

  10. J.-W. Lee, N.-I. Lee, C.-H. Han, IEEE Electron Device Lett. 20, 12 (1999)

    Article  Google Scholar 

  11. S. Han, J. Lee, H. Shin, Electron. Lett. 36, 361 (2000)

    Article  Google Scholar 

  12. C.-H. Tseng, T.-K. Chang, F.-T. Chu, J.-M. Shieh, B.-T. Dai, H.-C. Cheng, A. Chin, IEEE Electron Device Lett. 23, 333 (2002)

    Article  Google Scholar 

  13. A. Tabata, N. Matsuno, Y. Suzuoki, T. Mizutani, Thin Solid Films 289, 84 (1996)

    Article  Google Scholar 

  14. H. Liu, S. **ong, L. Li, Y. Zhang, Thin Solid Films 484, 170 (2005)

    Article  Google Scholar 

  15. C. Bundesmann, I.-M. Eichentopf, S. Mändl, H. Neumann, Thin Solid Films 516, 8604 (2008)

    Article  Google Scholar 

  16. Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Thin Solid Films 545, 111 (2013)

    Article  Google Scholar 

  17. Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, Y. Ji, Appl. Opt. 53, A83 (2014)

    Article  Google Scholar 

  18. Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Chin. Phys. Lett. 31, 046401 (2014)

    Article  Google Scholar 

  19. M. Mateev, T. Lautenschläger, D. Spemann, A. Finzel, J.W. Gerlach, F. Frost, C. Bundesmann, Eur. Phys. J. B 91, 45 (2018)

    Article  Google Scholar 

  20. V. Cosnier, M. Olivier, G. Théret, B. André, J. Vac. Sci. Technol. A 19, 2267 (2001)

    Article  Google Scholar 

  21. E. Defaÿ, B. André, F. Baume, G. Tartavel, D. Muyard, L. Ulmer, Ferroelectrics 288, 121 (2003)

    Article  Google Scholar 

  22. G. Tochitani, M. Shimozuma, H. Tagashira, J. Vac. Sci. Technol. A 11, 400 (1993)

    Article  Google Scholar 

  23. Y.-S. Lee, D. Choi, B. Shong, S. Oh, J.-S. Parka, Ceram. Int. 43, 2095 (2017)

    Article  Google Scholar 

  24. K.-S. Min, J.-Y. Chung, K. Lee, Jpn. J. Appl. Phys. 40, 2963 (2001)

    Article  Google Scholar 

  25. M. Lenzlinger, E.H. Snow, J. Appl. Phys. 40, 278 (1969)

    Article  Google Scholar 

  26. Z.A. Weinberg, Solid State Electron. 20, 11 (1977)

    Article  Google Scholar 

  27. Z.A. Weinberg, A. Hartstein, Solid State Commun. 20, 179 (1976)

    Article  Google Scholar 

  28. J.F. Verwey, E.A. Amerasekera, J. Bisschop, Rep. Prog. Phys. 53, 1297 (1990)

    Article  Google Scholar 

  29. T. Tsukuda, H. Ikoma, Jpn. J. Appl. Phys. 39, 8 (2000)

    Article  Google Scholar 

  30. M. Tabakomori, H. Ikoma, Jpn. J. Appl. Phys. 36, 5409 (1997)

    Article  Google Scholar 

  31. K. Nomura, H. Ogawa, J. Appl. Phys. 71, 1469 (1992)

    Article  Google Scholar 

  32. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  33. P. Ferrandis, M. Billaud, J. Duvernay, M. Martin, A. Arnoult, H. Grampeix, M. Cassé, H. Boutry, T. Baron, M. Vinet, G. Reimbold, J. Appl. Phys. 123, 161534 (2018)

    Article  Google Scholar 

  34. M.H. White, J.R. Cricchi, IEEE Trans. Electron Devices 19, 1280 (1972)

    Article  Google Scholar 

  35. J.T. Fitch, S.S. Kim, G. Lucovsky, J. Vac. Sci. Technol. A 8, 1871 (1990)

    Article  Google Scholar 

  36. I.-K. Oh, G. Yoo, C.M. Yoon, T.H. Kim, G.Y. Yeom, K. Kim, Z. Lee, H. Jung, C.W. Lee, H. Kim, H.-B.-R. Lee, Appl. Surf. Sci. 387, 109 (2016)

    Article  Google Scholar 

  37. D.J. DiMaria, J. Appl. Phys. 47, 4073 (1976)

    Article  Google Scholar 

  38. D.J. DiMaria, Proceedings of the international topical conference on the physics of SiO2 and its interfaces, p. 160 (1978)

  39. T.H. Ning, H.N. Yu, J. Appl. Phys. 45, 5373 (1974)

    Article  Google Scholar 

  40. L.P. Trombetta, R.J. Zeto, F.J. Feigl, M.E. Zvanut, ECS J. Solid State Sci. Technol. 132, 2706 (1985)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank Brigitte Martin and Bernard Aventurier for their advices in technical steps, and Walid Benzarti for his useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Ferrandis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrandis, P., Kanoun, M. & André, B. Electrical properties of thin silicon oxides grown at room temperature by ion beam sputtering technique. J Mater Sci: Mater Electron 30, 4880–4884 (2019). https://doi.org/10.1007/s10854-019-00782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00782-7

Navigation