Log in

Electrical properties of epoxy/ZnO nano-composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of nano-particles on the electrical properties of the epoxy/ZnO nano-composites are studied and the nonlinear conduction characteristics of the nano-composites are discussed. The morphology structure, relative permittivity, DC breakdown strength and DC conductivity of the nano-composites are measured. Micro-structure analysis shows that the ZnO nano-particles were well dispersed in the epoxy matrix. Experimental results show that the relative permittivity and DC conductivity of epoxy nano-composite with the filler loading of 0.5 wt% are lower than those of pure epoxy and the other nano-composites, but the 0.5 wt% has the highest breakdown strength among the epoxy/ZnO nano-composites. In addition, when the filler loading is larger than 0.5 wt%, the epoxy/ZnO nano-composite exhibits a distinct nonlinear conduction character, namely, that the DC conductivity is greatly dependent on the applied electric field. The variation of the electrical properties and the nonlinear conduction character against the filler loading may be attributed to the interaction zone around the nano-particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.A. Zakrevskii, N.T. Sudar, A. Zaopo, Y.A. Dubitsky, Mechanism of electrical degradation and breakdown of insulating polymers. J. Appl. Phys. 93, 2135–2140 (2003)

    Article  Google Scholar 

  2. J.M. Yang, X. Wang, H. Zhao, W.L. Zhang, M.Z. Xu, Influence of moisture absorption on the DC conduction and space charge property of MgO/LDPE nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 21, 1957–1964 (2014)

    Article  Google Scholar 

  3. H. Hama, T. Hikosaka, S. Okabe, H. Okubo, Cross-equipment study on charging phenomena of solid insulators in high voltage equipment. IEEE Trans. Dielectr. Electr. Insul. 14, 508–519 (2007)

    Article  Google Scholar 

  4. D.-E.A. Mansour, H. Kojima, N. Hayakawa, F. Endo, H. Okubo, Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface. IEEE Trans. Dielectr. Electr. Insul. 16, 1150–1157 (2009)

    Article  Google Scholar 

  5. T. Tanaka, G.C. Montanari, R. Mulhaupt, Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 11, 763–784 (2004)

    Article  Google Scholar 

  6. T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, Space charge trap** in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 15, 152–160 (2008)

    Article  Google Scholar 

  7. B.Y. Zhang, W.Q. Gao, P.F. Chu, Z. Zhang, G.X. Zhang, Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites. J. Mater. Sci. Mater. Electron. 29, 1964–1974 (2018)

    Article  Google Scholar 

  8. B.X. Du, J.W. Zhang, Y. Gao, Effects of TiO2 particles on surface charge of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 755–762 (2012)

    Article  Google Scholar 

  9. F.Q. Tian, Q.Q. Lei, X. Wang, Y. Wang, Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 19, 763–769 (2012)

    Article  Google Scholar 

  10. K. Tavernier, B.R. Varlow, D.W. Auckland, M. Ugur, Improvement in electrical insulators by nonlinear fillers. IEEE Proc. Sci. Meas. Technol. 146, 88–94 (1999)

    Article  Google Scholar 

  11. K.P. Donnelly, B.R. Varlow, Nonlinear dc and ac conductivity in electrically insulating composites. IEEE Trans. Dielectr. Electr. Insul. 10, 610–614 (2003)

    Article  Google Scholar 

  12. X. Wang, J.K. Nelson, L.S. Schadler, H. Hillborg, Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17, 1687–1696 (2010)

    Article  Google Scholar 

  13. T. Christen, L. Donzel, F. Greuter, Nonlinear resistive electric field grading part 1: theory and simulation. IEEE Electr. Insul. Mag. 26, 47–59 (2011)

    Article  Google Scholar 

  14. S.M. Lebedev, O.S. Gefle, A.E. Strizhkov, Novel polymeric composites with nonlinear current-voltage characteristic. IEEE Trans. Dielectr. Electr. Insul. 20, 289–295 (2013)

    Article  Google Scholar 

  15. J.I. Hong, L.S. Schadler, R.W. Siegel, E. Martensson, Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Appl. Phys. Lett. 82, 1956–1958 (2003)

    Article  Google Scholar 

  16. J.I. Hong, P. Winberg, L.S. Schadler, R.W. Siegel, Dielectric properties of zinc oxide/low density polyethylene nanocomposites. Mater. Lett. 59, 473–476 (2005)

    Article  Google Scholar 

  17. S.C. Tjong, G.D. Liang, Electrical properties of low density polyethylene/ZnO nanocomposites. Mater. Chem. Phys. 100, 1–5 (2006)

    Article  Google Scholar 

  18. S. Singha, M.J. Thomas, Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 16, 531–542 (2009)

    Article  Google Scholar 

  19. N.S. Jyothi, T.S. Ramu, M. Mandlik, Temperature distribution in resin impregnated paper insulation for transformer bushings. IEEE Trans. Dielectr. Electr. Insul. 17, 931–938 (2010)

    Article  Google Scholar 

  20. D.-E.A. Mansour, H. Kojima, N. Hayakawa, F. Endo, H. Okubo, Partial discharges and associated mechanisms for micro gap delamination at epoxy spacer in GIS. IEEE Trans. Dielectr. Electr. Insul. 17, 855–861 (2010)

    Article  Google Scholar 

  21. K. Fukunaga, T. Maeno, K. Okamoto, Three-dimensional space charge observation of ion migration in a metal-base printed circuit board. IEEE Trans. Dielectr. Electr. Insul. 10, 458–462 (2003)

    Article  Google Scholar 

  22. S. Singha, M.J. Thomas, Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 15, 12–23 (2008)

    Article  Google Scholar 

  23. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, W. Zenger, Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12, 629–643 (2005)

    Article  Google Scholar 

  24. Y.S. Han, S.T. Li, D.M. Min, Nonlinear conduction and surface potential decay of epoxy/SiC nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 24, 3154–3164 (2017)

    Article  Google Scholar 

  25. S.T. Li, G.L. Yin, G. Chen, J.Y. Li, S.N. Bai, L.S. Zhong, Y.X. Zhang, Q.Q. Lei, Short-term breakdown and long-term failure in nanodielectrics: a review. IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010)

    Article  Google Scholar 

  26. S.T. Li, G.L. Yin, S. Bai, J.Y. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 51677046, 51407051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nyu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, Q., Yang, H. et al. Electrical properties of epoxy/ZnO nano-composite. J Mater Sci: Mater Electron 29, 12765–12770 (2018). https://doi.org/10.1007/s10854-018-9394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9394-4

Navigation