Log in

Synthesis of hierarchical RGO@Cu2O@Cu nanocomposites: optimization of photocatalytic degradation of Direct Orange 39 using a response surface methodology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The RGO@Cu2O@Cu nanocomposites were prepared by hydrothermal method using ethylene glycol, copper acetate and graphene oxide. The molar ratio of Cu2O to Cu in the nanocomposites was changed by adjusting the hydrothermal reaction time. The synthesized products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and UV–Vis spectroscopy. The field emission scanning electron microscopy (FE-SEM) image shows the reduced graphene oxide (RGO) sheets decorated by uniform hierarchical Cu2O@Cu spheres. The photocatalytic activity of synthesized nanocomposites on degradation of Direct Orange 39 (DO39) as a pollutant was determined by visible light irradiation. For this purpose, a model was developed by the central composite design to describe the degradation efficiency of DO39 as a function of the operational parameters. The interaction effects and optimal parameters were obtained by using statgraphics software. The percentage of degradation efficiency (%DE) of DO39 approached 90% under optimal conditions. Predicted values were found to be in good agreement with experimental values (R2 = 99.20 and Adj-R2 = 98.65) which confirm suitability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. **e, Q. Su, J. Zhang, G. Du, B Xu. J. Mater. Sci 49, 218 (2013)

    Article  Google Scholar 

  2. Q. Li, J. Bian, L. Zhang, R Zhang, G Wang, D.H.L. Ng, ChemPlusChem. 79, 454 (2014)

    Article  Google Scholar 

  3. N. Tsuchiya, K. Kuwabara, A. Hidaka, K. Oda, K. Katayama, Phys. Chem. Chem. Phys. 14, 4734 (2012)

    Article  Google Scholar 

  4. L. **n, X. Ting, X. Changhui, J. Murowchick, X. Chen, Catal. Today 225, 64 (2014)

    Article  Google Scholar 

  5. H.Y. Xu, W.C. Liu, J. Shi, H. Zhao, S.Y. Qi, Environ. Sci. Pollut. Res 21, 1582 (2014)

    Article  Google Scholar 

  6. P. Das, P. Banerjee, S. Mondal. Environ. Sci. Pollut. Res 22, 1318 (2015)

    Article  Google Scholar 

  7. M. Azami, M. Bahram, S. Nouri, A. Naseri, J. Serb, Chem. Soc 77, 235 (2012)

    Google Scholar 

  8. G. Ciardelli, L. Corsi, M. Marucci, Resour. Conserv. Recycl. 31, 189 (2000)

    Article  Google Scholar 

  9. A. Nevine Kamal, Desalination 223, 152 (2008)

    Article  Google Scholar 

  10. N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam, S. Sivanesan. J. Hazard. Mater 151, 316 (2008)

    Article  Google Scholar 

  11. K. Tianyi, J. Chuanhong, Z. Chi, S. Junzhe, Z. Zhonghua, RSC Adv. 2, 12636 (2012)

    Article  Google Scholar 

  12. R. Mohammadzadeh Kakhki, F. Ahsani, N. Mir, J. Mater. Sci. Mater. Electron. 27, 11509 (2016)

    Article  Google Scholar 

  13. S.V. Elangovan, N. Sivakumar, V. Chandramohan, J. Mater. Sci. Mater. Electron. 26, 8753 (2015)

    Article  Google Scholar 

  14. M. Antonopoulou, I. Konstantinou, Environ. Sci. Pollut. Res 22, 9438 (2015)

    Article  Google Scholar 

  15. I. Kazeminezhad, A. Sadollahkhani, J. Mater. Sci. Mater. Electron. 27, 4206 (2016)

    Article  Google Scholar 

  16. K. Dai, X. Zhang, K. Fan, T. Peng, B. Wei, Appl. Surf. Sci 270, 238 (2013)

    Article  Google Scholar 

  17. S. Liu, H. Li, L. Yan, Mater. Res. Bull 48, 3328 (2013)

    Article  Google Scholar 

  18. T. M. Wandre, P. N. Gaikwad, A. S. Tapase, K. M. Garadkar, S. A. Vanalakar, P. D. Lokhande, R. Sasikala, P. P. Hankare J. Mater. Sci. Mater. Electron. 27, 825 (2016)

    Article  Google Scholar 

  19. C. Chen, H. Xu, L. Xu, F. Zhang, J. Dong, H. Wang, RSC Adv. 3, 25010 (2013)

    Article  Google Scholar 

  20. C. Hong, X. **, J. Totleben, J. Lohrman, E. Harak, B. Subramaniam, S. Ren. J. Mater. Chem. A 2, 7147 (2014)

    Article  Google Scholar 

  21. D. Liu, Z. Yang, P. Wang, F. Li, D. Wang, D. He, Nanoscale 5, 1917 (2013)

    Article  Google Scholar 

  22. A. Wang, X. Li, Y. Zhao, W. Wu, J. Chen, H. Meng, Powder Technol 261, 42 (2014)

    Article  Google Scholar 

  23. B. Zhou, H. Hongxia, Z. Liu, Y. Yanga, X. Huang, Z. Lü, Y. Sui, W. Su, Mater. Chem. Phys 126, 847 (2011)

    Google Scholar 

  24. T. Hong, F. Tao, J. Lin, W. Ding, M. Lan, J. Solid State Chem 228, 174 (2015)

    Article  Google Scholar 

  25. T. Kou, Y. Wang, C. Zhang, J. Sun, Z. Zhang, Chem. Eng. J 223, 76 (2013)

    Article  Google Scholar 

  26. L. Zhang, N. Li, H. Jiu, Q. Zhang, J. Mater. Sci. Mater. Electron. 27, 2748 (2016)

    Article  Google Scholar 

  27. S. Rabieh, K. Nassimi, M. Bagheri, Mater. Lett 162, 28 (2016)

    Article  Google Scholar 

  28. W. Zhao, J. Li, S. Wang, H. He, C. Sun, S. Yang. Appl. Catal. B 179, 9 (2015)

    Article  Google Scholar 

  29. H. Dongliang, H. Jiahai, Q. Long, P. Jiangrui, S. Zhenji, Rare Metal Mater. Eng. 44, 1888 (2015)

  30. X. An, K. Li, J. Tang, ChemSusChem 7, 1086 (2014)

    Article  Google Scholar 

  31. X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 1, 203 (2008)

    Article  Google Scholar 

  32. W. Chen, H. Yu, Q. Li, Y. Liu, J. Li, Soft Mater. 7, 10360 (2011)

    Article  Google Scholar 

  33. Y. Liu, J. Zhou, E. Zhu, J. Tang, X. Liu, W. Tang, J. Mater. Chem. C 3, 1011 (2015)

    Article  Google Scholar 

  34. J.S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, Electrochim. Acta 193, 104 (2016)

    Article  Google Scholar 

  35. S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, J. Am. Chem. Soc. 134, 4905 (2012)

    Article  Google Scholar 

  36. J. Nishio, M. Tokumura, H.T. Znad, Y. Kawase, J. Hazard. Mater 138, 106 (2006)

    Article  Google Scholar 

  37. N. Kashif, F. Ouyang, J. Environ. Sci. 21, 527 (2009)

    Article  Google Scholar 

  38. A.H. Mahvi, M. Ghanbarian, S. Nasseri, A. Khairi, Desalination 239, 309 (2009)

    Article  Google Scholar 

  39. U.G. Akpan, B.H. Hameed, J. Hazard. Mater 170, 520 (2009)

    Article  Google Scholar 

  40. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Water Air Soil Pollut. 215, 3 (2011)

    Article  Google Scholar 

  41. A.R. Khataee, A. Karimia, R. Darvishi Cheshmeh Soltani, M. Safarpour, Y. Hanifehpour, S. Woo Joo. Appl. Catal. A 488, 160 (2014)

    Article  Google Scholar 

  42. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147, 1 (2009)

    Article  Google Scholar 

  43. Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, ACS Nano 4, 7303 (2010)

    Article  Google Scholar 

  44. S. Rabieh, K. Nassimi, M. Bagheri, J. Mater. Sci. Mater. Electron. 27, 10052 (2016)

    Article  Google Scholar 

  45. H.R. Pant, B. Pant, H.J. Kim, A. Amarjargal, C.H. Park, L.D. Ti**g, E.K. Kim, C.S. Kim, Ceram. Int. 39, 5083 (2013)

    Article  Google Scholar 

  46. I. Tamiolakis, I.T., Papadas, K.C., Spyridopoulos, G.S., Armatas, RSC Adv. doi:10.1039/C6RA08546F (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sasan Rabieh or Hassan Zavvar Mousavi.

Additional information

SR and MB would like to dedicate this article to Prof. Dr. Alfred V. Hirner on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadian Fard, Z., Bagheri, M., Rabieh, S. et al. Synthesis of hierarchical RGO@Cu2O@Cu nanocomposites: optimization of photocatalytic degradation of Direct Orange 39 using a response surface methodology. J Mater Sci: Mater Electron 28, 9618–9626 (2017). https://doi.org/10.1007/s10854-017-6711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6711-2

Keywords

Navigation