Log in

Microwave and broadband dielectric properties of Ni substituted MgTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study reports the temperature dependence of dielectric response of Ni doped MgTiO3 ceramics over a broad frequency range. (Mg1−x Ni x )TiO3 (x = 0.00–0.07) ceramics are prepared by a solid-state reaction process. The processing parameters are optimized to achieve maximum relative density. Among all the samples, (Mg0.95Ni0.05)TiO3 (MNTO) ceramics is exhibited the highest density with the best microstructure at 1300 °C. The optimum microwave dielectric properties (ε r  ~ 17.44, Q × f 0 ~ 181 THz) are displayed by the sample doped with x = 0.05 wt%. The detailed dielectric studies are performed on (Mg0.95Ni0.05)TiO3 composition in two different frequency ranges, 100 Hz–100 kHz at 298–358 K and 1–100 MHz at 133–503 K, respectively. A dielectric constant of 18.26 at 100 MHz is observed for (Mg0.95Ni0.05)TiO3 specimen at temperature 503 K. The frequency dependent conductivity is explained based on the basis of Jonscher power law. Further, the DC conductivity results obey the Arrhenius law, and the obtained activation energies are found to be 0.41 and 0.06 eV for (Mg0.95Ni0.05)TiO3 ceramics, measured at 100 MHz for high temperature (293–503 K) and cryogenic temperatures (133–293 K), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.L. Huang, C.E. Ho, Int. J. Appl. Ceram. Technol. 7, E163–E169 (2010)

    Article  Google Scholar 

  2. Y. Wang, S.F. Wang, Y.M. Lin, Ceram. Int. 31, 905–909 (2005)

    Article  Google Scholar 

  3. L. Li, X. Ding, Q. Liao, Ceram. Int. 38, 1937–1941 (2012)

    Article  Google Scholar 

  4. C.L. Haung, S.H. Liu, Jpn. J. Appl. Phys. 46(1), 283–285 (2007)

    Article  Google Scholar 

  5. L. Li, X. Ding, Q. Liao, J. Alloys Compd. 509, 7271–7276 (2011)

    Article  Google Scholar 

  6. C.F. Tseng, C.H. Hsu, J. Am. Ceram. Soc. 92(5), 1149–1152 (2009)

    Article  Google Scholar 

  7. C.F. Tseng, J. Am. Ceram. Soc. 91(12), 4125–4128 (2008)

    Article  Google Scholar 

  8. J.H. Sohn, Y. Inaguma, S.O. Yoon, M. Iton, T. Nakamura, H.J. Kim, Jpn. J. Appl. Phys. 33, 5466–5470 (1994)

    Article  Google Scholar 

  9. B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  10. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  11. S.H. Shim, K. Niihara, K.H. Auh, K.B. Shim, J. Microsc. 205, 238–244 (2002)

    Article  Google Scholar 

  12. H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  13. S.F. Wang, Y.R. Wang, J.C. Hsu, J. Phys. Chem. Solids 7, 1011–1014 (2011)

    Article  Google Scholar 

  14. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80(7), 5367–5371 (1998)

    Google Scholar 

  15. B. Taeev, Physics of Dielectric Materials (Mir publications, Moscow, 1975)

    Google Scholar 

  16. I. Rivera, A. Kumar, N. Ortega, R.S. Katiyar, S. Lushnikov, Solid State Commun. 149(3), 172–176 (2009)

    Article  Google Scholar 

  17. S.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Mater. Chem. Phys. 132, 1007–1014 (2012)

    Article  Google Scholar 

  18. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  Google Scholar 

  19. B. Behara, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226–232 (2007)

    Article  Google Scholar 

  20. S. Upadhyay, O. Parkash, D. Kumar, J. Phys. D Appl. Phys. 37, 1483–1491 (2004)

    Article  Google Scholar 

  21. S.A. Hakim, F.A. ElWhab, A.S. Mohamed, M.F. Kotkata, Phys. Status Solidi A 198, 128–136 (2003)

    Article  Google Scholar 

  22. R.D. Shannon, Acta Cryst. A32, 751–767 (1976)

    Article  Google Scholar 

  23. J.P. Buffat, Borel. Phys. Rev. A 13, 2287 (1976)

    Article  Google Scholar 

  24. K.H. Yoon, Y.S. Kim, E.S. Kim, J. Mater. Res. 10, 2085–2090 (1995)

    Article  Google Scholar 

  25. J. Petzelt, S. Pacesova, J. Fousek, S. Kamba, V. Zeleny, V. Koukal, J. Schwarzbach, B.P. Gorshunov, A.A. Volkov, Ferroelectrics 93, 77–85 (1989)

    Article  Google Scholar 

  26. W.S. Kim, T.H. Hong, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 37, 5367–5371 (1998)

    Article  Google Scholar 

  27. P. Venkateswarlu, A. Laha, S.B. Krupanidhi, Thin Solid Films 474, 1 (2005)

    Article  Google Scholar 

  28. J. Rout, R. Padhee, P.R. Das, R.N.P. Choudhary, Adv. Appl. Phys. 1, 105–116 (2013)

    Google Scholar 

  29. X. Kuang, X. **g, J. Am. Ceram. Soc. 89(1), 241–246 (2006)

    Article  Google Scholar 

  30. G.A. Samara, J. Appl. Phys. 68, 4214–4219 (1990)

    Article  Google Scholar 

  31. G.A. Samara, Phys. Rev. 165, 959–969 (1968)

    Article  Google Scholar 

  32. G.A. Samara, Phys. Rev. B 13, 4529–4544 (1976)

    Article  Google Scholar 

  33. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, Adv. Mater. Lett. 3, 231–238 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Board of Research in Fusion Science & Technology (BRFST, India) of National Fusion Programme under the Project NFP-RF-A12-01. The authors are grateful to BRFST for financial support. D. Pamu thanks Defence Research and Development Organisation (DRDO) [ERIP/ER/0900371/M/01/1264], DAE-BRNS [37(1)/14/33/2015/BRNS], and Department of Science and Technology (DST) [SR/FTP/PS-109/2009] for providing the research facilities. P. Gogoi acknowledges the infrastructure facility of XRD provided by DST, New Delhi, through Fund for Improvement of S & T Infrastructure (FIST) program [SR/FST/PSII-020/2009].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pamu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, P., Sharma, P. & Pamu, D. Microwave and broadband dielectric properties of Ni substituted MgTiO3 ceramics. J Mater Sci: Mater Electron 27, 9052–9060 (2016). https://doi.org/10.1007/s10854-016-4938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4938-y

Keywords

Navigation