Log in

Influence of annealing on microstructure and piezoresistive properties of boron-doped hydrogenated nanocrystalline silicon thin films prepared by PECVD

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited by plasma enhanced chemical vapor deposition technique. Annealing treatment was performed on the deposited films at 400 °C for 60 min in nitrogen atmosphere. Microstructure of the as-deposited and annealed films was characterized by X-ray diffraction (XRD) and Raman scatter spectra, surface morphology of these films was analyzed with atomic force microscopy (AFM), and piezoresistive properties of these films were evaluated by a four-point bending-based measurement system. The influence of annealing treatment on microstructure and piezoresistive properties of boron-doped nc-Si:H thin films was comparatively studied. The Raman scatter spectra and XRD results together with AFM analysis results revealed that annealing treatment can increase the average grain size and crystalline volume fraction of boron-doped nc-Si:H thin films, and can alter grains distribution and concentration of the films. The piezoresistive property evaluation results showed that annealing treatment can increase the gauge factor of boron-doped nc-Si:H thin films from 29.9 to 42.3. These results indicated that annealing treatment can act as an effective way to improve piezoresistive sensitivity of boron-doped nc-Si:H thin films. In this paper, the correlation between boron-doped nc-Si:H thin films’ piezoresistive properties and microstructure changes induced by annealing was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.Z. Yue, B.J. Yan, G. Ganguly, J. Yang, S. Guha, C.W. Teplin, Appl. Phys. Lett. 88, 263507 (2006)

    Article  Google Scholar 

  2. S. Mukhopadhyay, R. Goswami, S. Ray, Sol. Energy Mater. Sol. Cells 93, 674–679 (2009)

    Article  Google Scholar 

  3. G.Z. Yue, B.J. Yan, J. Yang, S. Guha, J. Appl. Phys. 98, 074902 (2005)

    Article  Google Scholar 

  4. A. Chowdhury, S. Mukhopadhyay, S. Ray, Thin Solid Films 516, 6858–6862 (2008)

    Article  Google Scholar 

  5. Z. Li, X.W. Zhang, G.R. Han, Phys. Status Solidi A 207, 144–148 (2010)

    Article  Google Scholar 

  6. R. Amrani, D. Benlekehal, R. Baghdad, D. Senouci, A. Zeinert, K. Zellama, L. Chahed, J.D. Sib, Y. Bouizem, J. Non-Cryst. Solids 354, 2291–2295 (2008)

    Article  Google Scholar 

  7. Y. Vygranenko, E. Fathi, A. Sazonov, M. Vieira, A. Nathan, Sol. Energy Mater. Sol. Cells 94, 1860–1863 (2010)

    Article  Google Scholar 

  8. Y.L. He, G.Y. Hu, M.B. Yu, M. Liu, J.L. Wang, G.Y. Xu, Phys. Rev. B 59, 15352 (1999)

    Article  Google Scholar 

  9. W.S. Wei, T.M. Wang, C.X. Zhang, G.H. Li, Y.X. Li, Vacuum 71, 465–469 (2003)

    Article  Google Scholar 

  10. D. Dosev, B. Iniguez, L.F. Marsal, J. Pallares, T. Ytterdal, Solid State Electron. 47, 1917–1920 (2003)

    Article  Google Scholar 

  11. C.H. Lee, D. Striakhilev, A. Nathan, IEEE Trans. Electron Devices 54, 45–51 (2007)

    Article  Google Scholar 

  12. T. Anutgan, M. Anutgan, I. Atilgan, B. Katircioglu, Vacuum 85, 875–880 (2011)

    Article  Google Scholar 

  13. P. Alpuim, E.S. Marins, P.F. Rocha, I.G. Trindade, M.A. Carvalho, S. Lanceros-Mendez, Vacuum 83, 1279–1282 (2009)

    Article  Google Scholar 

  14. J. Gaspar, A. Gualdino, B. Lemke, O. Paul, V. Chu, J.P. Conde, J. Appl. Phys. 112, 024906 (2012)

    Article  Google Scholar 

  15. Y. He, H. Liu, M. Yu, X.M. Yu, Nanostruct. Mater. 7, 769–777 (1996)

    Article  Google Scholar 

  16. P. Alpuim, M. Andrade, V. Sencadas, Thin Solid Films 515, 7658–7661 (2007)

    Article  Google Scholar 

  17. M.H. Gullanar, Y.H. Zhang, H. Chen, W.S. Wei, G.Y. Xu, T.M. Wang, R.Q. Cui, W.Z. Shen, J. Cryst. Growth 256, 254–260 (2003)

    Article  Google Scholar 

  18. Z.H. Hu, X.B. Liao, H.W. Diao, Y. Cai, S.B. Zhang, F. Elvira, M. Rodrigo, J. Non-Cryst. Solids 352, 1900–1903 (2006)

    Article  Google Scholar 

  19. A.M. Ali, J. Lumin. 126, 614–622 (2007)

    Article  Google Scholar 

  20. J.I. Son, J.H. Shim, N.H. Cho, Curr. Appl. Phys. 10, 365–368 (2010)

    Article  Google Scholar 

  21. P.Q. Luo, Z.B. Zhou, Y.J. Li, S.Q. Lin, X.M. Dou, R.Q. Cui, Microelectron. J. 39, 12–19 (2008)

    Article  Google Scholar 

  22. A.F.I. Morral, J. Bertomeu, P.R.I. Cabarrocas, Mater. Sci. Eng. B 69, 559–563 (2000)

    Article  Google Scholar 

  23. F. Yang, X. Li, Z.H. Ren, G. Xu, Y. Liu, G. Shen, G.R. Han, J. Non-Cryst. Solids 359, 40–45 (2013)

    Article  Google Scholar 

  24. C.H. Lee, D.J. Grant, A. Sazonov, A. Nathan, J. Appl. Phys. 98, 034305 (2005)

    Article  Google Scholar 

  25. T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, J. Non-Cryst. Solids 266–269, 201–205 (2000)

    Article  Google Scholar 

  26. C.J. Arendse, G.F. Malgas, T.F.G. Muller, D. Knoesen, C.J. Oliphant, D.E. Motaung, S. Halindintwali, B.W. Mwakikunga, Nanoscale Res. Lett. 4, 307–312 (2009)

    Article  Google Scholar 

  27. P.J. French, A.G.R. Evens, Electron. Lett. 20, 999 (1984)

    Article  Google Scholar 

  28. P.J. French, A.G.R. Evens, Solid State Electron. 32, 1–10 (1989)

    Article  Google Scholar 

  29. L. Fang, W.L. Wang, P.D. Ding, K.J. Liao, J. Wang, J. Appl. Phys. 86, 5185 (1999)

    Article  Google Scholar 

  30. P. Alpuim, J. Gaspar, P. Gieschke, C. Ehling, J. Kistner, N.J. Gonçalves, M.I. Vasilevskiy, O. Paul, J. Appl. Phys. 109, 123717 (2011)

    Article  Google Scholar 

  31. P.J. French, A.G.R. Evans, J. Phys. E: Sci. Instrum. 19, 1055–1058 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (51005103/E0505), and Science and Technology Support Program of Jiangsu Province’s Science and Technology Office (BE2009123). The authors would like to thank Micro/Nano Science and Technology Center for preparing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Ding, J. & Cheng, G. Influence of annealing on microstructure and piezoresistive properties of boron-doped hydrogenated nanocrystalline silicon thin films prepared by PECVD. J Mater Sci: Mater Electron 26, 5353–5359 (2015). https://doi.org/10.1007/s10854-015-3079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3079-z

Keywords

Navigation