Log in

Superconductivity in the face-centered cubic W-M-Rh-Ir-Pt M = {Mo, Nb, Ta, Re} high-entropy alloy

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report single-phase superconducting face-centered cubic (FCC) intermetallic high-entropy alloys (HEAs) synthesized via splat cooling. The technique gives incredibly sharp diffraction peaks and superconducting transitions in resistivity measurements than reported in conventional arc melting. The single-phase materials fall at electron counts in the HEA superconductor alloy family where structural stability and optimal superconducting electron counts clash. The materials’ superconducting properties follow the general trends published for metallic alloys. Insights are provided as to why an FCC structure may be stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cantor B et al (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218

    Article  Google Scholar 

  2. Yeh J-W et al (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303

    Article  CAS  Google Scholar 

  3. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    Article  CAS  Google Scholar 

  4. Liu B et al (2020) Formation and superconductivity of single-phase high-entropy alloys with a tetragonal structure. ACS Appl Electron Mater 2(4):1130–1137

    Article  CAS  Google Scholar 

  5. Liu B et al (2021) Superconductivity and paramagnetism in Cr-containing tetragonal high-entropy alloys. J Alloys Compd 869:159293

    Article  CAS  Google Scholar 

  6. Stolze K et al (2018) High-entropy alloy superconductors on an α-Mn lattice. J Mater Chem C 6(39):10441–10449

    Article  CAS  Google Scholar 

  7. Liu B, Wu JF, Cui YW, Zhu QQ, **ao GR, Wang HD et al (2021) Structural evolution and superconductivity tuned by valence electron concentration in the Nb–Mo–Re–Ru–Rh high-entropy alloys. J Mater Sci Technol 85:11. https://doi.org/10.1016/j.jmst.2021.02.002

    Article  CAS  Google Scholar 

  8. Browne AJ, Strong DP, Cava RJ (2023) Phase stability and possible superconductivity of new 4d and 5d transition metal high-entropy alloys. J of Solid State Chem 321:123881

    Article  CAS  Google Scholar 

  9. Lee Y-S, Cava RJ (2019) Superconductivity in high and medium entropy alloys based on MoReRu. Phys C Supercond Appl 566:1353520

    Article  CAS  Google Scholar 

  10. Ishizu N, Kitagawa J (2020) Trial of a search for a face-centered-cubic high-entropy alloy superconductor. ar**v 2020, ar**v:2007.00788. Available online: https://arxiv.org/abs/2007.00788 Accessed on 23 Dec 2022

  11. Callister WD Jr (2000) Materials science and engineering an introduction. Dislocations and strengthening mechanisms. John Wiley & Sons Inc, New Jersey, pp 153–184

    Google Scholar 

  12. Pettifor DG (1970) Theory of the crystal structures of transition metals. J Phys C Solid State Phys 3(2):367

    Article  CAS  Google Scholar 

  13. Luo HL (1968) Superconductivity and lattice parameters in face-centered cubic Pt-W and Pd-W solid solutions. J Less Common Metals 15(3):299–302

    Article  CAS  Google Scholar 

  14. Sheng GUO, Liu CT (2011) Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 6:433–446

    Google Scholar 

  15. De Boer FR, Mattens W, Boom R, Miedema AR, Niessen AK (1988) Cohesion in metals: transition metal alloys, Netherlands: N.p., Web

  16. Troparevsky MC, Morris JR, Kent PRC, Lupini AR, Stocks GM (2015) Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X 5:011041

    Google Scholar 

  17. Koželj P, Vrtnik S, Jelen A, Jazbec S, Jaglicic Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J (2014) Discovery of a superconducting high-entropy alloy. Phys Rev Lett 113:107001

    Article  PubMed  Google Scholar 

  18. von Rohr F, Winiarski MJ, Tao J, Klimczuk T, Cava RJ (2016) Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Proc Natl Acad Sci USA 113:E7144

    Google Scholar 

  19. von Rohr FO, Cava RJ (2018) Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Phys Rev Mater 2:034801

    Article  Google Scholar 

  20. Kim G, Lee M-H, Yun JH, Rawat P, Jung S-G, Choi W, You T-S, Kim SJ, Rhyee J-S (2020) Strongly correlated and strongly coupled s-wave superconductivity of the high entropy alloy Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 compound. Acta Mater 186:250–256

    Article  CAS  Google Scholar 

  21. Wu K-Y, Chen S-K, Wu J-M (2018) Superconducting in equal molar NbTaTiZr-based high-entropy alloys. Nat Sci 10:110–124

    CAS  Google Scholar 

  22. Marik S, Varghese M, Sajilesh KP, Singh D, Singh RP (2018) Superconductivity in equimolar Nb-Re-Hf-Zr-Ti high entropy alloy. J Alloys Compd 769:1059–1063

    Article  CAS  Google Scholar 

  23. Ishizu N, Kitagawa J (2019) New high-entropy alloy superconductor Hf21Nb25Ti15V15Zr24. Res Phys 13:102275

    Google Scholar 

  24. Marik S, Motla K, Varghese M, Sajilesh KP, Singh D, Breard Y, Boullay P, Singh RP (2019) Superconductivity in a new hexagonal high-entropy alloy. Phys Rev Mater 3:060602(R)

    Article  Google Scholar 

  25. Liu B, Wu J, Cui Y, Zhu Q, **ao G, Wu S, Cao G, Ren Z (2020) Superconductivity in hexagonal Nb-Mo-Ru-Rh-Pd high-entropy alloys. Scr Mater 182:109–113

    Article  CAS  Google Scholar 

  26. Matthias BT (1955) Empirical relation between superconductivity and the number of valence electrons per atom. Phys Rev 97(1):74

    Article  CAS  Google Scholar 

  27. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549

    Article  CAS  Google Scholar 

  28. McMillan WL (1968) Transition temperature of strong-coupled superconductors. Phys Rev 167:331

    Article  CAS  Google Scholar 

  29. Riddle SK, Wilson TR, Rajivmoorthy M, Eberhart ME (2021) Molecules 26:5396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mizutani U, Sato H (2017) The physics of the Hume-Rothery electron concentration rule. Crystals 7:9

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Gordon and Betty Moore Foundation, Grant No. GBMF- 9066

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experiments were performed by Denver Strong in a laboratory funded by Professor Robert Cava.

Corresponding author

Correspondence to Denver Strong.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2690 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strong, D., Cava, R.J. Superconductivity in the face-centered cubic W-M-Rh-Ir-Pt M = {Mo, Nb, Ta, Re} high-entropy alloy. J Mater Sci 59, 10347–10356 (2024). https://doi.org/10.1007/s10853-024-09780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09780-5

Navigation