Log in

High energy storage properties of Nd(Mg2/3Nb1/3)O3 modified Bi0.5Na0.5TiO3 lead-free ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study proposes an optimization strategy to improve the energy storage performance of Bi0.5Na0.5TiO3 (BNT)-based ceramics. The strategy is to reduce the grain size, break the long-range polar ordering, form disordered polar nanoregions (PNRs), and increase the breakdown field strength (Eb). The (1-x)Bi0.5Na0.5TiO3-xNd(Mg2/3Nb1/3)O3 ((1-x)BNT-xNMN, x = 0.05, 0.10, 0.15 and 0.20) ceramics were prepared using this optimization strategy, and an ultrahigh recoverable energy storage density of 2.72 J/cm3 and an efficiency of 91.74% were obtained. Notably, this marks a several times increase in energy storage density compared to pure BNT ceramics. The energy storage density exhibits excellent electrical stability in the temperature range of 20–160 °C and frequency range of 1–200 Hz. Additionally, the power density (PD) of the ceramic reaches 19.74 MW/cm3 at an electric field of 180 kV/cm. These findings hold great promise as to pave the way for the development of cutting-edge energy storage solutions and high-performance capacitor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Liu G, Tang M, Hou X et al (2021) Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem Eng J 412:127555. https://doi.org/10.1016/j.cej.2020.127555

    Article  CAS  Google Scholar 

  2. Ding Y, Li P, He J et al (2022) Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos B Eng 230:109493. https://doi.org/10.1016/j.compositesb.2021.109493

    Article  CAS  Google Scholar 

  3. Lin Y, Li D, Zhang M et al (2019) Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS Appl Mater Interfaces 11:36824–36830. https://doi.org/10.1021/acsami.9b10819

    Article  CAS  PubMed  Google Scholar 

  4. Dai Z, Li D, Zhou Z et al (2022) A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics. Chem Eng J 427:131959. https://doi.org/10.1016/j.cej.2021.131959

    Article  CAS  Google Scholar 

  5. Dai Z, **e J, Fan X et al (2020) Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 ceramic. Chemi Eng J 397:125520. https://doi.org/10.1016/j.cej.2020.125520

    Article  CAS  Google Scholar 

  6. Yi J, Zhang L, **e B, Jiang S (2015) The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics. J Appl Phys 118:124107. https://doi.org/10.1063/1.4931886

    Article  ADS  CAS  Google Scholar 

  7. Han K, Luo N, Mao S et al (2019) Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into origin of antiferroelectricity. J Mater Chem A 7:26293–26301. https://doi.org/10.1039/C9TA06457E

    Article  CAS  Google Scholar 

  8. Hu Q, Bian J, Zelenovskiy PS et al (2018) Symmetry changes during relaxation process and pulse discharge performance of the BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic. J Appl Phys 124:054101. https://doi.org/10.1063/1.5030381

    Article  ADS  CAS  Google Scholar 

  9. Hannan MA, Hoque MM, Mohamed A, Ayob A (2017) Review of energy storage systems for electric vehicle applications: Issues and challenges. Renew Sustain Energy Rev 69:771–789. https://doi.org/10.1016/j.rser.2016.11.171

    Article  Google Scholar 

  10. Liu J, Ren K, Ma C et al (2020) Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic. Ceram Int 46:20576–20581. https://doi.org/10.1016/j.ceramint.2020.05.090

    Article  CAS  Google Scholar 

  11. Qi H, Zuo R, **e A et al (2019) Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Func Mater 29:1903877. https://doi.org/10.1002/adfm.201903877

    Article  CAS  Google Scholar 

  12. Zhang H, Wei T, Zhang Q et al (2020) A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C 8:16648–16667. https://doi.org/10.1039/D0TC04381H

    Article  CAS  Google Scholar 

  13. Dai Z, Wang S, Liu Y et al (2023) Energy storage performance of SrSc0.5Nb0.5O3 modified (Bi, Na)TiO3-based ceramic under low electric fields. J Am Ceram Soc 106:2366–2374. https://doi.org/10.1111/jace.18921

    Article  CAS  Google Scholar 

  14. Yang L, Kong X, Li F et al (2019) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108. https://doi.org/10.1016/j.pmatsci.2018.12.005

    Article  CAS  Google Scholar 

  15. Jiang J, Meng X, Li L et al (2021) Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering. Energy Storage Mater 43:383–390. https://doi.org/10.1016/j.ensm.2021.09.018

    Article  Google Scholar 

  16. Ma C, Zhang R, Zhang G et al (2023) Structural evolution and energy storage properties of Bi(Zn0.5Zr0.5)O3 modified BaTiO3-based relaxation ferroelectric ceramics. J Energy Storage 72:108374. https://doi.org/10.1016/j.est.2023.108374

    Article  Google Scholar 

  17. Pu Y, Zhang L, Cui Y, Chen M (2018) High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 ceramics. ACS Sustain Chem Eng 6:6102–6109. https://doi.org/10.1021/acssuschemeng.7b04754

    Article  CAS  Google Scholar 

  18. Zhang L, Pu X, Chen M et al (2018) Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics. J Eur Ceram Soc 38:2304–2311. https://doi.org/10.1016/j.jeurceramsoc.2017.11.053

    Article  CAS  Google Scholar 

  19. Gao Y, Zhu X, Yang B et al (2022) Grain size modulated (Na0.5Bi0.5)0.65Sr0.35TiO3-based ceramics with enhanced energy storage properties. Chem Eng J 433:133584. https://doi.org/10.1016/j.cej.2021.133584

    Article  CAS  Google Scholar 

  20. Yang F, Bao Y, Huang W et al (2022) Enhanced energy storage properties of hafnium-modified (0.7Ba0.55Sr0.45–0.3Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics via regulating polarization nonlinearity and bandgap. J Mater Chem C 10:7614–7625. https://doi.org/10.1039/D2TC00619G

    Article  CAS  Google Scholar 

  21. Wang Q, **e B, Zheng Q et al (2023) Bi0.5Na0.5TiO3-based relaxor-ferroelectric ceramics for low-electric-field dielectric energy storage via bidirectional optimization strategy. Chem Eng J 452:139422. https://doi.org/10.1016/j.cej.2022.139422

    Article  CAS  Google Scholar 

  22. Bilal MK, Wang J, Bashir R et al (2021) A novel relaxor (Bi, Na, Ba)(Ti, Zr)O3 lead-free ceramic with high energy storage performance. J Am Ceram Soc 104:3982–3991. https://doi.org/10.1111/jace.17785

    Article  CAS  Google Scholar 

  23. Chu B, Zhou X, Ren K et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336. https://doi.org/10.1126/science.1127798

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Li F, Zhai J, Shen B, Zeng H (2018) Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J Adv Dielectr 08:1830005. https://doi.org/10.1142/S2010135X18300050

    Article  CAS  Google Scholar 

  25. Liang P, Yang Z, Chao X (2016) Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics. J Alloy Compd 678:273–283. https://doi.org/10.1016/j.jallcom.2016.03.294

    Article  CAS  Google Scholar 

  26. Dai Z, **e J, Chen Z et al (2021) Improved energy storage density and efficiency of (1−x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3Nb1/3O3 lead-free ceramics. Chem Eng J 410:128341. https://doi.org/10.1016/j.cej.2020.128341

    Article  CAS  Google Scholar 

  27. Lian H, Shi J, Qiu Y, Chen X (2020) Dielectric and ferroelectric properties of (Bi0.5Na0.5)0.94-δBa0.06Ti1−xNbxO3 lead-free ceramics. J Mater Sci: Mater Electron 31:21467–21477. https://doi.org/10.1007/s10854-020-04660-5

    Article  CAS  Google Scholar 

  28. Li Q, Wang C, Zhang W, Fan H (2019) Influence of compositional ratio K/Na on structure and piezoelectric properties in [(Na1−xKx)0.5Bi0.5]Ti0.985Ta0.015O3 ceramics. J Mater Sci 54:4523–4531. https://doi.org/10.1007/s10853-018-3174-7

    Article  ADS  CAS  Google Scholar 

  29. Sui J, Fan H, Peng H et al (2019) Enhanced energy-storage performance and temperature-stable dielectric properties of (1–x) [(Na0.5Bi0.5)0.95Ba0.05]0.98La0.02TiO3-xK0.5Na0.5NbO3 lead-free ceramics. Ceram Int 45:20427–20434. https://doi.org/10.1016/j.ceramint.2019.07.019

    Article  CAS  Google Scholar 

  30. Wang C, Li Q, Zhang W et al (2020) [Bi0.5(Na0.4-xLixK0.1)]0.96Sr0.04Ti0.975Ta0.025O3 lead-free RELAXOR ceramics with the enhanced recoverable energy density. Ceram Int 46:715–721. https://doi.org/10.1016/j.ceramint.2019.09.024

    Article  CAS  Google Scholar 

  31. Yadav AK, Fan H, Yan B et al (2020) Enhanced storage energy density and fatigue free properties for 0.94Bi0.50(Na0.78K0.22)0.50Ti1-x(Al0.50Nb0.50)xO3 -0.06BaZrO3 ceramics. Ceram Int 46:17044–17052. https://doi.org/10.1016/j.ceramint.2020.03.292

    Article  CAS  Google Scholar 

  32. Mesrar M, Lamcharfi T, Echatoui N et al (2019) Hydrothermal synthesis of oxide and carbonate powders of (1-x)(Na0.5Bi0.5)Tio3-xBaTiO3 ceramics. Asian J Chem 31:309–316. https://doi.org/10.14233/ajchem.2019.21581

    Article  CAS  Google Scholar 

  33. Lidjici H, Lagoun B, Berrahal M et al (2015) XRD, Raman and electrical studies on the (1–x)(Na0.5Bi0.5)TiO3xBaTiO3 lead free ceramics. J Alloy Compd 618:643–648. https://doi.org/10.1016/j.jallcom.2014.08.161

    Article  CAS  Google Scholar 

  34. Fu J, Zuo R (2013) Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg, Ti)O3–PbZrO3–PbTiO3 ferroelectric ceramics. Acta Mater 61:3687–3694. https://doi.org/10.1016/j.actamat.2013.02.055

    Article  ADS  CAS  Google Scholar 

  35. Yang W, Zeng H, Yan F et al (2022) Superior energy storage properties in NaNbO3-based ceramics via synergistically optimizing domain and band structures. J Mater Chem A 10:11613–11624. https://doi.org/10.1039/D2TA02534E

    Article  CAS  Google Scholar 

  36. Li F, Zhang S, Yang T et al (2016) The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat Commun 7:13807. https://doi.org/10.1038/ncomms13807

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dai Z, **e J, Liu W et al (2020) Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Appl Mater Interfaces 12:30289–30296. https://doi.org/10.1021/acsami.0c02832

    Article  CAS  PubMed  Google Scholar 

  38. Zhu M, Liu L, Hou Y et al (2007) Microstructure and electrical properties of MnO-Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics. J Am Ceram Soc 90:120–124. https://doi.org/10.1111/j.1551-2916.2006.01349.x

    Article  CAS  Google Scholar 

  39. Dai Z, Zhang F, Wang S et al (2022) High energy storage properties for BiMg0.5Ti0.5O3-modified KNN ceramics under low electric fields. J Mater Sci 57:15919–15928. https://doi.org/10.1007/s10853-022-07636-4

    Article  ADS  CAS  Google Scholar 

  40. El-Desoky MM, Hannora AE (2020) Dielectric relaxation and impedance spectroscopy of 30V2O5 · 20Bi2O3 · 50P2O5 glass. Glass Phys Chem 46:487–496. https://doi.org/10.1134/S1087659620060073

    Article  CAS  Google Scholar 

  41. Mannu P, Palanisamy M, Bangaru G et al (2019) Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films. Appl Phys A 125:458. https://doi.org/10.1007/s00339-019-2751-1

    Article  ADS  CAS  Google Scholar 

  42. Ma W, Zhu Y, Marwat MA et al (2019) Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics. J Mater Chem C 7:281–288. https://doi.org/10.1039/C8TC04447C

    Article  CAS  Google Scholar 

  43. Huang W, Chen Y, Li X et al (2018) Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics. Appl Phys Lett 113:203902. https://doi.org/10.1063/1.5054000

    Article  ADS  CAS  Google Scholar 

  44. Kumar N, Ionin A, Ansell T et al (2015) Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl Phys Lett 106:252901. https://doi.org/10.1063/1.4922947

    Article  ADS  CAS  Google Scholar 

  45. Ogihara H, Randall CA, Trolier-McKinstry S (2009) High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J Am Ceram Soc 92:1719–1724. https://doi.org/10.1111/j.1551-2916.2009.03104.x

    Article  CAS  Google Scholar 

  46. Zhang X, Shen Y, Xu B et al (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055–2061. https://doi.org/10.1002/adma.201503881

    Article  CAS  PubMed  Google Scholar 

  47. Xu Q, Lanagan MT, Huang X et al (2016) Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage. Ceram Int 42:9728–9736. https://doi.org/10.1016/j.ceramint.2016.03.062

    Article  CAS  Google Scholar 

  48. Qiu Y, Lin Y, Liu X, Yang H (2019) Bi(Mg2/3Nb1/3)O3 addition inducing high recoverable energy storage density in lead-free 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 bulk ceramics. J Alloy Compd 797:348–355. https://doi.org/10.1016/j.jallcom.2019.05.092

    Article  CAS  Google Scholar 

  49. Zhou M, Liang R, Zhou Z, Dong X (2018) Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 6:8528–8537. https://doi.org/10.1039/C8TC03003K

    Article  CAS  Google Scholar 

  50. Ahn CW, Amarsanaa G, Won SS et al (2015) Antiferroelectric thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times. ACS Appl Mater Interfaces 7:26381–26386. https://doi.org/10.1021/acsami.5b08786

    Article  CAS  PubMed  Google Scholar 

  51. Hreščak J, Dražić G, Deluca M et al (2017) Donor do** of K0.5Na0.5NbO3 ceramics with strontium and its implications to grain size, phase composition and crystal structure. J Eur Ceram Soc 37:2073–2082. https://doi.org/10.1016/j.jeurceramsoc.2016.12.053

    Article  CAS  Google Scholar 

  52. Xu R, Xu Z, Feng Y et al (2016) Temperature dependence of energy storage in Pb0.90La0.04Ba0.04 [(Zr0.7Sn0.3)0.88Ti0.12]O3 antiferroelectric ceramics. J Am Ceram Soc 99:2984–2988. https://doi.org/10.1111/jace.14297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Program of Shaanxi Province (No. 2023-YBGY-423), the Foreign Experts Program of Science and Technology Ministry (Nos. G2023041034L; G2023041001L), Foundation of China Scholarship Council (No. 2020008610142), and Foundation of **’an Intelligent Optoelectronic Materials and Devices International Science and Technology Cooperation.

Author information

Authors and Affiliations

Authors

Contributions

Yu Pan contributed to software, data curation, writing—original draft, and writing—review and editing. Zhonghua Dai contributed to funding acquisition, conceptualization, and methodology. Chenxi Liu performed visualization and investigation. **n Zhao performed validation and formal analysis. Shintaro Yasui, Yu Cong and Shuitao Gu contributed to supervision, project administration, and resources.

Corresponding authors

Correspondence to Zhonghua Dai or Shuitao Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Dai, Z., Liu, C. et al. High energy storage properties of Nd(Mg2/3Nb1/3)O3 modified Bi0.5Na0.5TiO3 lead-free ceramics. J Mater Sci 59, 3284–3296 (2024). https://doi.org/10.1007/s10853-024-09440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09440-8

Navigation