Log in

Facile fabrication of amorphous NiFeP nanosheets to promote urea oxidation reaction for energy-saving hydrogen production

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Although Urea oxidation reaction (UOR) with favorable thermodynamic potential has been well-acknowledged as a feasible alternative to slow oxygen evolution reaction for hydrogen production through water splitting, but the shortage of low-cost and high efficiency electrocatalysts restricts its practical development. In this research, a free-standing nickel–iron-phosphide (NiFeP) nanosheets electrocatalysts on nickel foam is synthesized by electrodeposition method. The presence of phosphide (P) causes nickel–iron (NiFe) to evolve from crystalline to amorphous structures. The NiFeP electrocatalysts with nanosheets structure exhibit reliable electrocatalytic activities toward UOR with small potential of 1.397 V at 10 mA cm−2, low Tafel slope of 60.1 mV dec−1 and outstanding catalytic stability in 1.0 M KOH with 0.33 M urea solution. More impressively, the electrochemical activation energy (Ea) of UOR for the NiFeP electrocatalyst (35.6 kJ mol−1) is much lower than that of NiFe electrocatalyst (52.1 kJ mol−1). The phosphorus do** triggers the electronic structure of Ni and Fe site reconstruction, which is conducive to accelerating charge and mass transport, and then contributes to the enhanced electrocatalytic performance. Furthermore, the formation of amorphous structure and nanosheets structure by the incorporation of phosphorus contributes to the improved intrinsic activity of NiFeP for UOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support all plots within this paper are available from the corresponding author upon reasonable request.

References

  1. Wu Y, Sun Z, Wang Y, Yin L, He Z, Zhang Z, Hayat MD, Zang Q, Lian J (2023) Cyclic voltammetric deposition of binder-free Ni-Se film on Ni foams as efficient bifunctional electrocatalyst for boosting overall urea-water electrolysis. J Alloys Compd 937:168460. https://doi.org/10.1016/j.jallcom.2022.168460

    Article  CAS  Google Scholar 

  2. Sun F, Qin J, Wang Z, Yu M, Wu X, Sun X, Qiu J (2021) Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat Commun 12:4182. https://doi.org/10.1038/s41467-021-24529-3

    Article  CAS  Google Scholar 

  3. You S, Wu Y, Wang Y, He Z, Yin L, Zhang Y, Sun Z, Zhang Z (2022) Pulse-electrodeposited Ni–Fe–Sn films supported on Ni foam as an excellent bifunctional electrocatalyst for overall water splitting. Int J Hydrogen Energy 47:29315–29326. https://doi.org/10.1016/j.ijhydene.2022.06.265

    Article  CAS  Google Scholar 

  4. Gujjula SR, Karingula S, Shajahan S, Siliveri S, Goskula S, Chirra S, Gobi KV, Narayanan V (2023) Rational design of metal organic framework derived porous Au@Co3O4/C nanocomposite materials for the electrochemical overall water splitting. J Mater Sci 58:9130–9147. https://doi.org/10.1007/s10853-023-08619-9

    Article  CAS  Google Scholar 

  5. Ding Y, Du X, Zhang X (2022) Rose-like Cu-doped Ni3S2 nanoflowers decorated with thin NiFe LDH nanosheets for high-efficiency overall water and urea electrolysis. Appl Surf Sci 584:152622. https://doi.org/10.1016/j.apsusc.2022.152622

    Article  CAS  Google Scholar 

  6. Zhang J, He T, Wang M, Qi R, Yan Y, Dong Z, Liu H, Wang H, **a BY (2019) Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel–molybdenum nanotube array. Nano Energy 60:894–902. https://doi.org/10.1016/j.nanoen.2019.04.035

    Article  CAS  Google Scholar 

  7. Zhang Q, Sun M, Yao M, Zhu J, Yang S, Chen L, Sun B, Zhang J, Hu W, Zhao P (2022) Interfacial engineering of an FeOOH@Co3O4 heterojunction for efficient overall water splitting and electrocatalytic urea oxidation. J Colloid Interface Sci 623:617–626. https://doi.org/10.1016/j.jcis.2022.05.070

    Article  CAS  Google Scholar 

  8. Jiang L, Pan Y, Zhang J, Chen X, Ye X, Li Z, Li C, Sun Q (2022) Mo propellant boosting the activity of Ni–P for efficient urea-assisted water electrolysis of hydrogen evolution. J Colloid Interface Sci 622:192–201. https://doi.org/10.1016/j.jcis.2022.04.050

    Article  CAS  Google Scholar 

  9. Luong QT, Choi HJ, Huynh TBN, Song J, Cho Y, Kwon OJ (2022) Unraveling the formation of optimum point in NiCo-based electrocatalysts for urea oxidation reaction. Electrochim Acta 431:141159. https://doi.org/10.1016/j.electacta.2022.141159

    Article  CAS  Google Scholar 

  10. Diao Y, Liu Y, Hu G, Zhao Y, Qian Y, Wang H, Shi Y, Li Z (2022) NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production. Biosens Bioelectron 211:114380. https://doi.org/10.1016/j.bios.2022.114380

    Article  CAS  Google Scholar 

  11. Hu L, ** L, Zhang T, Zhang J, He J, Chen D, Li N, Xu Q, Lu J (2022) Self-supported MoO2–MoO3/Ni2P hybrids as a bifunctional electrocatalyst for energy-saving hydrogen generation via urea–water electrolysis. J Colloid Interface Sci 614:337–344. https://doi.org/10.1016/j.jcis.2022.01.129

    Article  CAS  Google Scholar 

  12. Samdani JS, Sanetuntikul J, Shanmugam S (2022) Self-supported iron-doped nickel sulfide as efficient catalyst for electrochemical urea and hydrazine oxidation reactions. Int J Hydrogen Energy 47:27347–27357. https://doi.org/10.1016/j.ijhydene.2022.06.073

    Article  CAS  Google Scholar 

  13. Kang J, Sheng C, Wang J, Xu H, Zhao B, Chen S, Qing Y, Wu Y (2023) Natural-wood-fiber-assisted synthesis of Ni2P embedded in P-doped porous carbon as highly active catalyst for urea electro-oxidation. Int J Hydrogen Energy 48:7644–7654. https://doi.org/10.1016/j.ijhydene.2022.11.210

    Article  CAS  Google Scholar 

  14. Zhang X, Fang X, Zhu K, Yuan W, Jiang T, Xue H, Tian J (2022) Fe-do** induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation. J Power Sources 520:230882. https://doi.org/10.1016/j.jpowsour.2021.230882

    Article  CAS  Google Scholar 

  15. Liu S, Ma L, Li J (2023) Facile preparation of amorphous NiFe hydroxide by corrosion engineering for electrocatalytic water and urea oxidation. J Alloys Compd 936:168271. https://doi.org/10.1016/j.jallcom.2022.168271

    Article  CAS  Google Scholar 

  16. Ding R, Li X, Shi W, Xu Q, Wang L, Jiang H, Yang Z, Liu E (2016) Mesoporous Ni–P nanocatalysts for alkaline urea electrooxidation. Electrochim Acta 222:455–462. https://doi.org/10.1016/j.electacta.2016.10.198

    Article  CAS  Google Scholar 

  17. Yang L, Ru F, Shi J, Yang T, Guo C, Chen Y, Wang E, Du Z, Chou K, Hou X (2023) Trifunctional electrocatalysts based on feather-like NiCoP 3D architecture for hydrogen evolution, oxygen evolution, and urea oxidation reactions. Ceram Int 49:659–668. https://doi.org/10.1016/j.ceramint.2022.09.035

    Article  CAS  Google Scholar 

  18. Priyadarshi P, Katiyar PK, Maurya R (2022) A review on mechanical, tribological and electrochemical performance of ceramic particle-reinforced Ni-based electrodeposited composite coatings. J Mater Sci 57:19179–19211. https://doi.org/10.1007/s10853-022-07809-1

    Article  CAS  Google Scholar 

  19. Ma J, Chi X, Huang Y, Zou R, Li D, Li Z, Li X, Liu C, Peng X (2021) Biomass-based protic ionic liquid derived N, P, co-doped porous carbon-coated CoP nanocrystals for efficient hydrogen evolution reaction. J Mater Sci 56:18188–18199. https://doi.org/10.1007/s10853-021-06235-z

    Article  CAS  Google Scholar 

  20. Fang K, Wu T, Hou B, Lin H (2022) Green synthesis of Ni3S2 nanoparticles from a nontoxic sulfur source for urea electrolysis with high catalytic activity. Electrochim Acta 421:140511. https://doi.org/10.1016/j.electacta.2022.140511

    Article  CAS  Google Scholar 

  21. Fu Y, Zhang D, Li P, Han Y, You J, Wei Q, Yang W (2023) Tailoring Ni–Fe–Se film on Ni foam via electrodeposition optimization for efficient oxygen evolution reaction. Electrochim Acta 451:142294. https://doi.org/10.1016/j.electacta.2023.142294

    Article  CAS  Google Scholar 

  22. Wu JB, **a X, Guo RQ, Huang XH, Lin Y (2017) Ni nanoparticles embedded into cross-linked NiO nanoflakes as enhanced cathode for alkaline batteries. Mater Res Bull 96:315–319. https://doi.org/10.1016/j.materresbull.2017.03.016

    Article  CAS  Google Scholar 

  23. Xu Q, Gao W, Wang M, Yuan G, Ren X, Zhao R, Zhao S, Wang Q (2020) Electrodeposition of NiS/Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets as an efficient and durable dual-functional electrocatalyst for overall water splitting. Int J Hydrogen Energy 45:2546–2556. https://doi.org/10.1016/j.ijhydene.2019.11.217

    Article  CAS  Google Scholar 

  24. Hu W, Fu H, Chen L, Wu X, Geng B, Huang Y, Xu Y, Du M, Shan G, Song Y, Wu Z, Zheng Q (2023) Synthesis of amorphous Nickel–Cobalt hydroxides with high areal capacitance by one-step electrodeposition using polymeric additive. Chem Eng J 451:138613. https://doi.org/10.1016/j.cej.2022.138613

    Article  CAS  Google Scholar 

  25. Li L, Huang W, Lei J, Shang B, Li N, Pan F (2019) Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution. Appl Surf Sci 479:540–547. https://doi.org/10.1016/j.apsusc.2019.02.134

    Article  CAS  Google Scholar 

  26. Kurowski A, Schultze JW, Staikov G (2002) Initial stages of Ni–P electrodeposition: growth morphology and composition of deposits. Electrochem Commun 4:565–569. https://doi.org/10.1016/S1388-2481(02)00372-7

    Article  CAS  Google Scholar 

  27. Wu Y, Zhang Y, Wang Y, He Z, Gu Z, You S (2021) Potentiostatic electrodeposited of Ni–Fe–Sn on Ni foam served as an excellent electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 46:26930–26939. https://doi.org/10.1016/j.ijhydene.2021.05.189

    Article  CAS  Google Scholar 

  28. Zhang Y, Chen J, Tan H, Ji H, Li Y (2022) Ni-doped CoP with multi-level hollow structure as efficient electrocatalyst for overall water splitting. J Mater Sci 57:14430–14439. https://doi.org/10.1007/s10853-022-07533-w

    Article  CAS  Google Scholar 

  29. Ye Y, Gan Y, Cai R, Dai X, Yin X, Nie F, Ren Z, Wu B, Cao Y, Zhang X (2022) Oxygen vacancies and surface reconstruction on NiFe LDH@Ni(OH)2 heterojunction synergistically triggering oxygen evolution and urea oxidation reaction. J Alloys Compd 921:166145. https://doi.org/10.1016/j.jallcom.2022.166145

    Article  CAS  Google Scholar 

  30. Lin S, Yu Y, Sun D, Meng F, Chu W, Huang L, Ren J, Su Q, Ma S, Xu B (2022) FeNi2P three-dimensional oriented nanosheet array bifunctional catalysts with better full water splitting performance than the full noble metal catalysts. J Colloid Interface Sci 608:2192–2202. https://doi.org/10.1016/j.jcis.2021.09.166

    Article  CAS  Google Scholar 

  31. Gao Y, Chen Z, Zhao Y, Yu W, Jiang X, He M, Li Z, Ma T, Wu Z, Wang L (2022) Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range. Appl Catal B-Environ 303:120879. https://doi.org/10.1016/j.apcatb.2021.120879

    Article  CAS  Google Scholar 

  32. Wang S, Zhao L, Li J, Tian X, Wu X, Feng L (2022) High valence state of Ni and Mo synergism in NiS2–MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J Energy Chem 66:483–492. https://doi.org/10.1016/j.jechem.2021.08.042

    Article  CAS  Google Scholar 

  33. Cao Q, Yuan Y, Wang K, Huang W, Zhao Y, Sun X, Ding R, Lin W, Liu E, Gao P (2022) Phase and crystallinity regulations of Ni(OH)2 by vanadium do** boost electrocatalytic urea oxidation reaction. J Colloid Interface Sci 618:411–418. https://doi.org/10.1016/j.jcis.2022.03.054

    Article  CAS  Google Scholar 

  34. Munde AV, Mulik BB, Chavan PP, Sathe BR (2020) Enhanced electrocatalytic activity towards urea oxidation on Ni nanoparticle decorated graphene oxide nanocomposite. Electrochim Acta 349:136386. https://doi.org/10.1016/j.electacta.2020.136386

    Article  CAS  Google Scholar 

  35. Elsawy H, Thamer BM, Sedky A, El-Newehy MH (2023) Facile two-step synthesis of nickel nanoparticles supported on 3D porous carbon frameworks as an effective electrocatalyst for urea and methanol oxidation. Mater Chem Phys 297:127361. https://doi.org/10.1016/j.matchemphys.2023.127361

    Article  CAS  Google Scholar 

  36. Wang S, Xu P, Tian J, Liu Z, Feng L (2021) Phase structure tuning of graphene supported Ni–NiO Nanoparticles for enhanced urea oxidation performance. Electrochim Acta 370:137755. https://doi.org/10.1016/j.electacta.2021.137755

    Article  CAS  Google Scholar 

  37. Lian J, Wu Y, Sun J (2020) High current density electrodeposition of NiFe/Nickel Foam as a bifunctional electrocatalyst for overall water splitting in alkaline electrolyte. J Mater Sci 55:15140–15151. https://doi.org/10.1007/s10853-020-05080-w

    Article  CAS  Google Scholar 

  38. Zhang B, Wang S, Ma Z, Qiu Y (2019) Ni0-rich Ni/NiO nanocrystals for efficient water-to-hydrogen conversion via urea electro-oxidation. Appl Surf Sci 496:143710. https://doi.org/10.1016/j.apsusc.2019.143710

    Article  CAS  Google Scholar 

  39. Bian H, Chen T, Chen Z, Liu J, Li Z, Du P, Zhou B, Zeng X, Tang J, Liu C (2021) One-step synthesis of mesoporous Cobalt sulfides (CoSx) on the metal substrate as an efficient bifunctional electrode for overall water splitting. Electrochim Acta 389:138786. https://doi.org/10.1016/j.electacta.2021.138786

    Article  CAS  Google Scholar 

  40. Yang L, Zhang L (2022) Interfacial electronic modification of bimetallic oxyphosphides as Multi-functional electrocatalyst for water splitting and urea electrolysis. J Colloid Interface Sci 607:546–555. https://doi.org/10.1016/j.jcis.2021.09.013

    Article  CAS  Google Scholar 

  41. Li Q, Chen Q, Lei S, Zhai M, Lv G, Cheng M, Xu L, Xu H, Deng Y, Bao J (2023) Crystalline Ni–Fe phosphide/amorphous P doped Fe-(oxy)hydroxide heterostructure as a multifunctional electrocatalyst for solar cell-driven hydrogen production. J Colloid Interface Sci 631:56–65. https://doi.org/10.1016/j.jcis.2022.10.130

    Article  CAS  Google Scholar 

  42. Wang F, Zhang K, Zha Q, Ni Y (2022) Honeycomb-like Ni–Mo–S on Ni foam as superior bifunctional electrocatalyst for hydrogen evolution and urea oxidation. J Alloys Compd 899:163346. https://doi.org/10.1016/j.jallcom.2021.163346

    Article  CAS  Google Scholar 

  43. Feng J, Chen M, Zhou P, Liu D, Chen Y, He B, Bai H, Liu D, Ip WF, Chen S, Liu D, Feng W, Ni J, Pan H (2022) Reconstruction optimization of distorted FeOOH/Ni hydroxide for enhanced oxygen evolution reaction. Mater Today Energy 27:101005. https://doi.org/10.1016/j.mtener.2022.101005

    Article  CAS  Google Scholar 

  44. Li Q, Zheng S, Du M, Pang H (2021) Ultrathin nanosheet metal–organic framework@NiO/Ni nanorod composites. Chem Eng J 417:129201. https://doi.org/10.1016/j.cej.2021.129201

    Article  CAS  Google Scholar 

  45. Wei S, Wang X, Wang J, Sun X, Cui L, Yang W, Zheng Y, Liu J (2017) CoS2 nanoneedle array on Ti mesh: a stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Electrochim Acta 246:776–782. https://doi.org/10.1016/j.electacta.2017.06.068

    Article  CAS  Google Scholar 

  46. Yan L, Sun Y, Hu E, Ning J, Zhong Y, Zhang Z, Hu Y (2019) Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis. J Colloid Interface Sci 541:279–286. https://doi.org/10.1016/j.jcis.2019.01.096

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof & Head, School of Mechanical and Electrical Engineering, **nxiang University for supporting us by providing lab and technical facilities.

Funding

This work was financially supported by Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (fma2020008), Jiangsu Provincial Double Innovation Program (JSSCBS20211000), the Department Education of Jiangsu Province (No. 23KJB430013), and Guangdong Basic and Applied Basic Research Foundation (2021A1515110092).

Author information

Authors and Affiliations

Authors

Contributions

JC: Investigation, writing—original draft preparation, data curation. GW: Investigation, visualization, writing—reviewing and editing. SH: Conceptualization, methodology, project administration, funding acquisition. WY: Analysing and reviewing the results. ZY: Writing—reviewing and editing. YW: Writing—reviewing, editing and funding acquisition.

Corresponding authors

Correspondence to Shusen Hou or Yihui Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

There is no ethical issues involved in this study.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3181 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Wang, G., Hou, S. et al. Facile fabrication of amorphous NiFeP nanosheets to promote urea oxidation reaction for energy-saving hydrogen production. J Mater Sci 58, 16019–16032 (2023). https://doi.org/10.1007/s10853-023-09048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09048-4

Navigation