Log in

Fabrication of copper–diamond composite by friction stir processing

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The friction stir process has been used for the first time to fabricate copper–diamond composite. The initial diamond particles were fragmented and embedded into Cu alloy due to the pressures applied during the friction stir process. A drastic refinement of the diamond particles was observed due to attrition during processing. Chromium (Cr) particles in the base Cu alloy have also been refined during friction stir process which appears to further promote grain refinement in Cu. The Cu–diamond interface appears to have good adhesion, except at chipped corners of some particles. The Cr particles decorate the Cu–diamond interface indicating a strong affinity of Cr to the diamond surface. Also, the adhesion of Cr particles is better on the surface of smaller fragmented diamond particles. The thermal conductivity of the composite is lower than friction stir-processed copper and as-received copper alloy due to significant grain refinement and the presence of Cu–diamond interfaces. However, the fabricated composite may find potential uses in commercial applications due to the unique combination of increased hardness and high thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Zhang Y, Li J, Zhao L, Wang X (2015) Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J Mater Sci 50:688–696

    Article  CAS  Google Scholar 

  2. Tan Z, Li Z, Fan G, Kai X, Ji G, Zhang L et al (2013) Diamond/aluminum composites processed by vacuum hot pressing: microstructure characteristics and thermal properties. Diam Relat Mater 31:1–5

    Article  CAS  Google Scholar 

  3. Monje I, Louis E, Molina J (2013) Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Compos A Appl Sci Manuf 48:9–14

    Article  CAS  Google Scholar 

  4. Ruch P, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Selective interfacial bonding in Al (Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66:2677–2685

    Article  CAS  Google Scholar 

  5. Abyzov AM, Kruszewski MJ, Ciupiński Ł, Mazurkiewicz M, Michalski A, Kurzydłowski KJ (2015) Diamond–tungsten based coating–copper composites with high thermal conductivity produced by pulse plasma sintering. Mater Des 76:97–109

    Article  CAS  Google Scholar 

  6. Raza K, Khalid FA (2014) Optimization of sintering parameters for diamond–copper composites in conventional sintering and their thermal conductivity. J Alloy Compd 615:111–118

    Article  CAS  Google Scholar 

  7. Sinha V, Gengler JJ, Muratore C, Spowart JE (2015) Effects of disorder state and interfacial layer on thermal transport in copper/diamond system. J Appl Phys 117:074305

    Article  Google Scholar 

  8. Kang Q, He X, Ren S, Zhang L, Wu M, Liu T et al (2013) Preparation of high thermal conductivity copper–diamond composites using molybdenum carbide-coated diamond particles. J Mater Sci 48:6133–6140

    Article  CAS  Google Scholar 

  9. Fan Y-M, Guo H, Xu J, Chu K, Zhu X-X, Jia C-C (2011) Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration. Int J Min Metall Mater 18:472–478

    Article  Google Scholar 

  10. Zhang Y, Zhang H, Wu J, Wang X (2011) Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scripta Mater 65:1097–1100

    Article  CAS  Google Scholar 

  11. Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44:303–308

    Article  CAS  Google Scholar 

  12. Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174

    Article  CAS  Google Scholar 

  13. Kidalov SV, Shakhov FM (2009) Thermal conductivity of diamond composites. Materials 2:2467–2495

    Article  CAS  Google Scholar 

  14. Bai G, Li N, Wang X, Wang J, Kim MJ, Zhang H (2018) High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration. J Alloy Compd 735:1648–1653

    Article  CAS  Google Scholar 

  15. Chen H, Jia C-C, Li S-J, Jia X, Yang X (2012) Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique. Int J Min Metall Mater 19:364–371

    Article  CAS  Google Scholar 

  16. Rosinski M, Ciupinski L, Grzonka J, Michalski A, Kurzydlowski K (2012) Synthesis and characterization of the diamond/copper composites produced by the pulse plasma sintering (PPS) method. Diam Relat Mater 27:29–35

    Article  Google Scholar 

  17. Zhang H, Liu Y, Zhang F, Zhang D, Zhu H, Fan T (2018) Hot deformation behavior and processing maps of diamond/Cu composites. Metall Mater Trans A 49:2202–2212

    Article  CAS  Google Scholar 

  18. Zhang H, Qi Y, Li J, Wang J, Wang X (2018) Effect of Zr content on mechanical properties of diamond/Cu-Zr composites produced by gas pressure infiltration. J Mater Eng Perform 27:714–720

    Article  CAS  Google Scholar 

  19. Arai S, Ueda M (2019) Fabrication of high thermal conductivity Cu/diamond composites at ambient temperature and pressure. AIP Adv 9:085309

    Article  Google Scholar 

  20. Tian Y, Li Q, Wang Z-D, Wang G-D (2015) Effects of ultra fast cooling on microstructure and mechanical properties of pipeline steels. J Mater Eng Perform 24:3307–3314

    Article  CAS  Google Scholar 

  21. Abyzov AM, Kidalov SV, Shakhov FM (2011) High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J Mater Sci 46:1424–1438

    Article  CAS  Google Scholar 

  22. Abyzov AM, Shakhov FM, Averkin AI, Nikolaev VI (2015) Mechanical properties of a diamond–copper composite with high thermal conductivity. Mater Des 87:527–539

    Article  CAS  Google Scholar 

  23. Rape A, Liu X, Kulkarni A, Singh J (2013) Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology. J Mater Sci 48:1262–1267

    Article  CAS  Google Scholar 

  24. Jia S, Yang F (2021) High thermal conductive copper/diamond composites: state of the art. J Mater Sci 56:2241–2274

    Article  CAS  Google Scholar 

  25. Zhang C, Wang R, Cai Z, Peng C, Feng Y, Zhang L (2015) Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing. Surf Coat Technol 277:299–307

    Article  CAS  Google Scholar 

  26. Mizuuchi K, Inoue K, Agari Y, Tanaka M, Takeuchi T, Tani J-I et al (2016) Effect of boron addition on the thermal properties of diamond-particle-dispersed Cu-matrix composites fabricated by SPS. J Mater Sci Chem Eng 4:1

    CAS  Google Scholar 

  27. Li J, Wang X, Qiao Y, Zhang Y, He Z, Zhang H (2015) High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scripta Mater 109:72–75

    Article  CAS  Google Scholar 

  28. Ekimov E, Suetin N, Popovich A, Ralchenko V (2008) Thermal conductivity of diamond composites sintered under high pressures. Diam Relat Mater 17:838–843

    Article  CAS  Google Scholar 

  29. Sahraeinejad S, Izadi H, Haghshenas M, Gerlich A (2015) Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Mater Sci Eng A 626:505–513

    Article  CAS  Google Scholar 

  30. Hou W, Shen Z, Huda N, Oheil M, Shen Y, Jahed H et al (2021) Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Mater Sci Eng, A 809:140992

    Article  CAS  Google Scholar 

  31. Hou W, Ding Y, Huang G, Huda N, Shah LHA, Piao Z et al (2022) The role of pin eccentricity in friction stir welding of Al-Mg-Si alloy sheets: Microstructural evolution and mechanical properties. Int J Adv Manuf Technol 121:7661–7675

    Article  Google Scholar 

  32. Shah L, Huda N, Esmaeili S, Walbridge S, Gerlich A (2020) Structural morphology of Al-Mg-Si alloy friction stir welds through tool eccentricity. Mater Lett 275:128098

    Article  CAS  Google Scholar 

  33. Surekha K, Els-Botes A (2011) Development of high strength, high conductivity copper by friction stir processing. Mater Des 32:911–916

    Article  CAS  Google Scholar 

  34. Khodaverdizadeh H, Mahmoudi A, Heidarzadeh A, Nazari E (2012) Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater Des 35:330–334

    Article  CAS  Google Scholar 

  35. Moghaddam MS, Parvizi R, Haddad-Sabzevar M, Davoodi A (2011) Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: influence of stir bands. Mater Des 32:2749–2755

    Article  CAS  Google Scholar 

  36. Izadi H, Nolting A, Munro C, Bishop D, Plucknett K, Gerlich A (2013) Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol 213:1900–1907

    Article  CAS  Google Scholar 

  37. Rabkin E, Gutman I, Kazakevich M, Buchman E, Gorni D (2005) Correlation between the nanomechanical properties and microstructure of ultrafine-grained copper produced by equal channel angular pressing. Mater Sci Eng, A 396:11–21

    Article  Google Scholar 

  38. Dobatkin S, Gubicza J, Shangina D, Bochvar N, Tabachkova N (2015) High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation. Mater Lett 153:5–9

    Article  CAS  Google Scholar 

  39. Bachmaier A, Rathmayr GB, Bartosik M, Apel D, Zhang Z, Pippan R (2014) New insights on the formation of supersaturated solid solutions in the Cu–Cr system deformed by high-pressure torsion. Acta Mater 69:301–313

    Article  CAS  Google Scholar 

  40. Islamgaliev R, Nesterov K, Bourgon J, Champion Y, Valiev R (2014) Nanostructured Cu-Cr alloy with high strength and electrical conductivity. J Appl Phys 115:194301

    Article  Google Scholar 

  41. Moelle C, Werner M, SzuÈcs F, Wittorf D, Sellschopp M, Von Borany J et al (1998) Specific heat of single-, poly-and nanocrystalline diamond. Diam Relat Mater 7:499–503

    Article  CAS  Google Scholar 

  42. Banerjee B (2005) An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals. ar**v preprint cond-mat/0512466

  43. Monachon C, Weber L, Dames C (2016) Thermal boundary conductance: A materials science perspective. Ann Rev Mater Res 46:433

    Article  CAS  Google Scholar 

  44. Brown R (1981) The effect of dislocations on thermal conductivity. J Phys Colloq 42:C6-271-C6-3

    Article  Google Scholar 

  45. Kotchetkov D, Zou J, Balandin A, Florescu D, Pollak FH (2001) Effect of dislocations on thermal conductivity of GaN layers. Appl Phys Lett 79:4316–4318

    Article  CAS  Google Scholar 

  46. Hasselman D, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515

    Article  Google Scholar 

  47. Chu K, Jia C, Guo H, Li W (2013) On the thermal conductivity of Cu–Zr/diamond composites. Mater Des 45:36–42

    Article  CAS  Google Scholar 

  48. Bai G, Wang L, Zhang Y, Wang X, Wang J, Kim MJ et al (2019) Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater Charact 152:265–275

    Article  CAS  Google Scholar 

  49. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    Article  CAS  Google Scholar 

  50. Chen H, Jia C, Li S (2012) Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques. J Mater Sci 47:3367–3375

    Article  CAS  Google Scholar 

  51. Cho HJ, Yan D, Tam J, Erb U (2019) Effects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials. J Alloy Compd 791:1128–1137

    Article  CAS  Google Scholar 

  52. Hagio T, Park J-H, Naruse Y, Goto Y, Kamimoto Y, Ichino R et al (2020) Electrodeposition of nano-diamond/copper composite platings: improved interfacial adhesion between diamond and copper via formation of silicon carbide on diamond surface. Surf Coat Technol 403:126322

    Article  CAS  Google Scholar 

  53. Arai S, Ueda M (2020) Fabrication of high thermal conductivity copper/diamond composites by electrodeposition under potentiostatic conditions. J Appl Electrochem 50:631–638

    Article  CAS  Google Scholar 

  54. He X, Zhang Z, Liu P, Zhu P, Guan H, Nan J et al (2022) Research on maximizing the diamond content of diamond/SiC composite. J Eur Ceram Soc 42:3127–3134

    Article  CAS  Google Scholar 

  55. Гopдeeв C, Кopчaгинa C, Зaпeвaлoв B, Пapшин B, Cepoв E (2021) Aлмaзoкapбидкpeмниeвый кoмпoзит в кaчecтвe эффeктивнoгo пoглoтитeля микpoвoлн. Элeктpoникa и микpoэлeктpoникa CBЧ 1:30–34 (In russian)

    Google Scholar 

  56. EduPack G (2021) Granta design: Cambridge. UK

  57. Beygelzimer Y, Kulagin R, Fratzl P, Estrin Y (2021) The earth’s lithosphere inspires materials design. Adv Mater 33:2005473

    Article  CAS  Google Scholar 

  58. Qi Y, Kosinova A, Kilmametov AR, Straumal BB, Rabkin E (2018) Plastic flow and microstructural instabilities during high-pressure torsion of Cu/ZnO composites. Mater Charact 145:389–401

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Gerald Schwartz and Heather Reisman Foundation through a research grant promoting collaboration between the University of Waterloo and the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmul Huda.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1244 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huda, N., Bisht, A., Moreau, E. et al. Fabrication of copper–diamond composite by friction stir processing. J Mater Sci 58, 4184–4198 (2023). https://doi.org/10.1007/s10853-023-08279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08279-9

Navigation