Log in

Positively charged loose nanofiltration membranes prepared by a green ionic cross-link method

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Positively charged loose nanofiltration membranes were prepared via a green ionic cross-link method, without using of harmful solvents and extra cross-linkers. Sulfonated poly-ether-ether-ketone (SPEEK) was incorporated into PES membrane to introduce negatively charged sites. Branched PEI, which contains primary amino groups and secondary amino groups, was used as polycation to deposit on the SPEEK functionalized PES support. A dense separation layer of polyelectrolyte complex was formed through the ionic cross-linking between the amine groups in PEI and the sulfuric acid groups in SPEEK, evidenced by the ATR-IR, XPS, SEM and AFM results. The membrane with water permeance around 20 L/(m2·h·bar) and molecular weight cut-off around 600 Da (characterized by PEGs) was obtained at optimized conditions. The membrane can reject dyes with molecular weight down to 300 Da, with lower rejections of monovalent and divalent salts. In addition, the influences of post-treatment and the PEI deposition parameters on the membrane performance were investigated. The heat treatment improved the membrane performance in terms of rejection by stabilizing the polyelectrolyte complexes. The glycerol treatment protected the membrane from pore collapses during thermal annealing, resulting in membranes with acceptable permeances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Eriksson P (1988) Nanofiltration extends the range of membrane filtration. Environ Prog 7(1):58–62

    Article  CAS  Google Scholar 

  2. Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254

    Article  CAS  Google Scholar 

  3. Dragan ES, Mihai M, Schwarz S (2009) Complex nanoparticles based on chitosan and ionic/nonionic strong polyanions: formation, stability, and application. ACS Appl Mater Interfaces 1:1231–1240

    Article  CAS  Google Scholar 

  4. Su B, Wang T, Wang Z, Gao X, Gao C (2012) Preparation and performance of dynamic layer-by-layer PDADMAC/PSS nanofiltration membrane. J Membr Sci 423–424:324–331

    Article  Google Scholar 

  5. Wang L, Wang N, Li J, Li J, Bian W, Ji S (2016) Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance. Sep Purif Technol 160:123–131

    Article  CAS  Google Scholar 

  6. Zhen H, Wang T, Jia R, Su B, Gao C (2015) Preparation and performance of antibacterial layer-by-layer polyelectrolyte nanofiltration membranes based on metal–ligand coordination interactions. RSC Adv 5:86784–86794

    Article  CAS  Google Scholar 

  7. Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom IFJ (2014) Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym Chem 5:1817–1831

    Article  CAS  Google Scholar 

  8. Huang Y, Sun J, Wu D, Feng X (2018) Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Sep Purif Technol 207:142–150

    Article  CAS  Google Scholar 

  9. Joseph N, Thomas J, Ahmadiannamini P, Van Gorp H, Bernstein R, De Feyter S, Smet M, Dehaen W, Hoogenboom R, Vankelecom IFJ (2017) Ultrathin single bilayer separation membranes based on hyperbranched sulfonated poly(aryleneoxindole). Adv Func Mater 27:1605068

    Article  Google Scholar 

  10. Gherasim CV, Luelf T, Roth H, Wessling M (2016) Dual-Charged hollow fiber membranes for low-pressure nanofiltration based on polyelectrolyte complexes: one-step fabrication with tailored functionalities. ACS Appl Mater Interfaces 8:19145–19157

    Article  CAS  Google Scholar 

  11. Joseph N, Ahmadiannamini P, Jishna PS, Volodin A, Vankelecom IFJ (2015) ‘Up-scaling’ potential for polyelectrolyte multilayer membranes. J Membr Sci 492:271–280

    Article  CAS  Google Scholar 

  12. Emonds S, Roth H, Wessling M (2020) Chemistry in a spinneret – formation of hollow fiber membranes with a cross-linked polyelectrolyte separation layer. J Membr Sci 612:118325

    Article  CAS  Google Scholar 

  13. Liu C, Mao H, Zheng J, Zhang S (2017) In situ surface crosslinked tight ultrafiltration membrane prepared by one-step chemical reaction-involved phase inversion process between activated PAEK-COOH and PEI. J Membr Sci 538:58–67

    Article  CAS  Google Scholar 

  14. Zarei F, Moattari RM, Rajabzadeh S, Bagheri M, Taghizadeh A, Mohammadi T, Matsuyama H (2019) Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine. J Membr Sci 588:117207

    Article  CAS  Google Scholar 

  15. Bagheri M, Rajabzadeh S, Elmarghany MR, Moattari RM, Bakhtiari O, Inada A, Matsuyama H, Mohammadi T (2020) Preparation of a positively charged NF membrane by evaporation deposition and the reaction of PEI on the surface of the C-PES/PES blend UF membrane. Prog Org Coat 141:105570

    Article  CAS  Google Scholar 

  16. ** J, Du X, Yu J, Qin S, He M, Zhang K, Chen G (2020) High performance nanofiltration membrane based on SMA-PEI cross-linked coating for dye/salt separation. J Membr Sci 611:118307

    Article  CAS  Google Scholar 

  17. Ghiasi S, Behboudi A, Mohammadi T, Khanlari S (2019) Effect of surface charge and roughness on ultrafiltration membranes performance and polyelectrolyte nanofiltration layer assembly. Coll Surf A Physicochem Eng Aspect 580:123753

    Article  CAS  Google Scholar 

  18. Jiang Z, Miao J, He Y, Tu K, Chen S, Zhang R, Zhang L, Yang H (2019) A novel positively charged composite nanofiltration membrane based on polyethyleneimine with a tunable active layer structure developed via interfacial polymerization. RSC Adv 9:10796–10806

    Article  CAS  Google Scholar 

  19. Zhao S, Wang Z (2017) A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J Membr Sci 524:214–224

    Article  CAS  Google Scholar 

  20. Lv Y, Yang H-C, Liang H-Q, Wan L-S, Xu Z-K (2015) Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. J Membr Sci 476:50–58

    Article  CAS  Google Scholar 

  21. Feng C, Xu J, Li M, Tang Y, Gao C (2014) Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate. J Membr Sci 451:103–110

    Article  CAS  Google Scholar 

  22. Li P, Wang Z, Yang L, Zhao S, Song P, Khan B (2018) A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. J Membr Sci 555:56–68

    Article  CAS  Google Scholar 

  23. Luo L, Chung T-S, Weber M, Staudt C, Maletzko C (2017) Molecular interaction between acidic sPPSU and basic HPEI polymers and its effects on membrane formation for ultrafiltration. J Membr Sci 524:33–42

    Article  CAS  Google Scholar 

  24. Kerres J, Ullrich A, Meier F, Häring T (1999) Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ion 125:243–249

    Article  CAS  Google Scholar 

  25. Bai L, Liu Y, Ding A, Ren N, Li G, Liang H (2019) Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal. Chem Eng J 358:1519–1528

    Article  CAS  Google Scholar 

  26. Goh K, Setiawan L, Wei L, Si R, Fane AG, Wang R, Chen Y (2015) Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J Membr Sci 474:244–253

    Article  CAS  Google Scholar 

  27. Ren J, Li Z, Wong F-S (2006) A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes. J Membr Sci 279:558–569

    Article  CAS  Google Scholar 

  28. Zhang X, Tian J, Ren Z, Shi W, Zhang Z, Xu Y, Gao S, Cui F (2016) High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly(arylene ether sulfone) multiblock copolymer/polysulfone substrate. J Membr Sci 520:529–539

    Article  CAS  Google Scholar 

  29. Lau W-J, Ismail AF (2009) Effect of SPEEK content on the morphological and electrical properties of PES/SPEEK blend nanofiltration membranes. Desalination 249:996–1005

    Article  CAS  Google Scholar 

  30. Maab H, Schieda M, Yave W, Shishatskiy S, Nunes SP (2009) SPEEK/polyimide blends for proton conductive membranespresented at the 1st CARISMA conference, progress MEA 2008, La Grande Motte, 21st–24th September 2008, Fuel Cells, 9:401–409

  31. Wei X, Hong J, Zhu S, Chen J, Lv B (2017) Structure-performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine. J Mater Sci 52:11701–11714

    Article  CAS  Google Scholar 

  32. Vanzetti L, Pasquardini L, Potrich C, Vaghi V, Battista E, Causa F, Pederzolli C (2016) XPS analysis of genomic DNA adsorbed on PEI-modified surfaces. Surf Interface Anal 48:611–615

    Article  CAS  Google Scholar 

  33. Won SW, Kwak IS, Yun YS (2014) The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresour Technol 160:93–97

    Article  CAS  Google Scholar 

  34. Wang XL, Fang YY, Tu CH, Van der Bruggen B (2012) Modelling of the separation performance and electrokinetic properties of nanofiltration membranes. Int Rev Phys Chem 31:111–130

    Article  Google Scholar 

  35. Liu Y, Chen GQ, Yang X, Deng H (2019) Preparation of layer-by-layer nanofiltration membranes by dynamic deposition and crosslinking. Membranes (Basel) 9:20

    Article  Google Scholar 

  36. Han J, Yang D, Zhang S, Wang L, Jian X (2014) Preparation and performance of SPPES/PPES hollow fiber composite nanofiltration membrane with high temperature resistance. Desalination 350:95–101

    Article  CAS  Google Scholar 

  37. Luo L, Wang P, Zhang S, Han G, Chung T-S (2014) Novel thin-film composite tri-bore hollow fiber membrane fabrication for forward osmosis. J Membr Sci 461:28–38

    Article  CAS  Google Scholar 

  38. Orooji Y, Ghasali E, Emami N, Noorisafa F, Razmjou A (2019) ANOVA design for the optimization of TiO2 coating on polyether sulfone membranes. Molecules 2924

  39. Zhang S, Jian X, Dai Y (2005) Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane. J Membr Sci 246:121–126

    Article  CAS  Google Scholar 

  40. Peeters JMM, Boom JP, Mulder MHV, Strathmann H (1998) Retention measurements of nanofiltration membranes with electrolyte solutions. J Membr Sci 145:199–209

    Article  CAS  Google Scholar 

  41. Teixeira MR, Rosa MJ, Nyström M (2005) The role of membrane charge on nanofiltration performance. J Membr Sci 265:160–166

    Article  CAS  Google Scholar 

  42. Dey TK, Bindal RC, Prabhakar S, Tewari PK (2011) Development, characterization and performance evaluation of positively-charged thin film-composite nanofiltration membrane containing fixed quaternary ammonium moieties. Sep Sci Technol 46:933–943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research support from National Natural Science Foundation of China (grant number: 21808174) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hu, D., Liu, L. et al. Positively charged loose nanofiltration membranes prepared by a green ionic cross-link method. J Mater Sci 57, 3067–3082 (2022). https://doi.org/10.1007/s10853-021-06857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06857-3

Navigation