Log in

Molecular dynamics simulations of dislocation–coherent twin boundary interaction in face-centered cubic metals

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interaction mechanisms between dislocations and coherent twin boundary (CTB) were determined with molecular dynamics simulations. The dislocation slip rate is found to depend on the temperature and the shear rate. The edge and screw dislocations displayed different mechanisms when they interacted with the CTB. The edge dislocation could pass through the CTB, leaving a twinning dislocation to heal the boundary, while the screw dislocation was absorbed by the CTB. The activation energy of overcoming the CTB was also calculated. The energy barrier for the edge dislocation to pass through the CTB was much higher than that needed for the screw one to be absorbed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Jeon JB, Dehm G (2015) Formation of dislocation networks in a coherent Cu Σ3(1 1 1) twin boundary. Scripta Mater 102:71–74

    Article  CAS  Google Scholar 

  2. Hu Q, Li L, Ghoniem NM (2009) Stick–slip dynamics of coherent twin boundaries in copper. Acta Mater 57:4866–4873

    Article  CAS  Google Scholar 

  3. Zhu T, Gao H (2012) Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scripta Mater 66:843–848

    Article  CAS  Google Scholar 

  4. Song JL, Li DZ, Bai SB (2015) Deformation mechanisms and microstructural morphology of a TWIP steel during static tensile test at room temperature. J Iron Steel Res 27:61–66

    CAS  Google Scholar 

  5. Qian LH, Liu S, Meng JY, Guo PC, Zhang FC (2012) Cyclic deformation and hardening of Hadfield high manganese steel for crossing. J Yanshan Univ 36:507–510

    CAS  Google Scholar 

  6. ** ZH, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H (2006) The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centered cubic metals. Scripta Mater 54:1163–1168

    Article  CAS  Google Scholar 

  7. Imrich PJ, Kirchlechner C, Dehm G (2015) Influence of inclined twin boundaries on the deformation behavior of Cu micropillars. Mater Sci Eng A 642:65–70

    Article  CAS  Google Scholar 

  8. Imrich PJ, Kirchlechner C, Motz C, Dehm G (2014) Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Mater 73:240–250

    Article  CAS  Google Scholar 

  9. Imrich PJ, Kirchlechner C, Kiener D, Dehm G (2015) Internal and external stresses: In situ TEM compression of Cu bicrystals containing a twin boundary. Scripta Mater 100:94–97

    Article  CAS  Google Scholar 

  10. Malyar NV, Micha JS, Dehm G, Kirchlechner C (2017) Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Mater 129:91–97

    Article  CAS  Google Scholar 

  11. ** ZH, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56:1126–1135

    Article  CAS  Google Scholar 

  12. Dewald M, Curtin WA (2007) Multiscale modelling of dislocation/grain boundary interactions: II. Screw dislocations im**ing on tilt boundaries in Al. Philos Mag 87:4615–4641

    Article  CAS  Google Scholar 

  13. Dewald M, Curtin WA (2006) Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations im**ing on Σ3, Σ9 and Σ11 tilt boundaries in Al. Model Simul Mater Sci Eng 19:055002

    Article  Google Scholar 

  14. Chassagne M, Legros M, Rodney D (2011) Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni. Acta Mater 59:1456–1463

    Article  CAS  Google Scholar 

  15. Jung JE, Park J, Kim JS, Jeon JB, Kim SY, Chang YW (2014) Temperature effect on twin formation kinetics and deformation behavior of Fe-18Mn-0.6C TWIP steel. Met Mater Int 20:27–34

    Article  CAS  Google Scholar 

  16. Liu FC, Yang ZN, Zheng CL, Zhang FC (2012) Simultaneously improving the strength and ductility of coarse-grained hadfield steel with increasing strain rate. Scripta Mater 66:431–434

    Article  CAS  Google Scholar 

  17. Chen C, Zhang FC, Wang F, Liu H, Yu BD (2017) Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Mater Sci Eng A 679:95–103

    Article  CAS  Google Scholar 

  18. Karaman I, Sehitoglu H, Gall K, Chumlyakov Y, Maier HJ (2000) Deformation of single crystal Hadfield steel by twinning and slip. Acta Mater 48:1345–1359

    Article  CAS  Google Scholar 

  19. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33

    Article  CAS  Google Scholar 

  20. Poletaev GM, Starostenkov MD (2010) Contributions of different mechanisms of self-diffusion in face-centered cubic metals under equilibrium conditions. Phys Solid State 52:1146–1154

    Article  CAS  Google Scholar 

  21. Poletaev GM, Starostenkov MD, Dmitriev SV (2016) Interatomic potentials in the systems Pd-H and Ni-H. Mater Phys Mech 27:53–59

    CAS  Google Scholar 

  22. Poletaev GM, Zorya IV, Rakitin RY, Iliina MA (2019) Interatomic potentials for describing impurity atoms of light elements in fcc metals. Mater Phys Mech 42:380–388

    CAS  Google Scholar 

  23. Friedel J (1964) Dislocations. Pergamon press, Oxford

    Google Scholar 

  24. Cahn RW, Haasen P (1983) Physical metallurgy, 3rd edn. North-Holland Physics Publishing, Amsterdam

    Google Scholar 

  25. Zhao S, Osetsky YN, Zhang Y (2017) Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. J Alloy Compd 701:1003–1008

    Article  CAS  Google Scholar 

  26. Po G, Cui Y, Rivera D, Cereceda D, Swinburne TD, Marian J, Ghoniem N (2016) A phenomenological dislocation mobility law for bcc metals. Acta Mater 119:123–135

    Article  CAS  Google Scholar 

  27. Groh S, Marin EB, Horstemeyer MF, Zbib HM (2009) Multiscale modeling of the plasticity in an aluminum single crystal. Int J Plast 25:1456–1473

    Article  CAS  Google Scholar 

  28. Andrievski RA, Glezer AM (2009) Strength of nanostructures. Phys Uspekhi 52:315–334

    Article  CAS  Google Scholar 

  29. Olmsted DL, Hector JLG, Curtin WA, Clifton RJ (2005) Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model Simul Mater Sci Eng 13:371–388

    Article  CAS  Google Scholar 

  30. Queyreau S, Marian J, Gilbert MR, Wirth BD (2011) Edge dislocation mobilities in bcc Fe obtained by molecular dynamics. Phys Rev B 84:64106

    Article  Google Scholar 

  31. Malyar NV, Grabowski B, Dehm G, Kirchlechner C (2018) Dislocation slip transmission through a coherent Σ3{111} copper twin boundary: strain rate sensitivity activation volume and strength distribution function. Acta Mate 161:412–419

    Article  CAS  Google Scholar 

  32. Liang Y, Yang X, Gong M, Liu G, Liu Q, Wang J (2019) Interactions between dislocations and three-dimensional annealing twins in face centered cubic metals. Comp Mater Sci 161:371–378

    Article  CAS  Google Scholar 

  33. Lee WS, Chou JK (2005) The effect of strain rate on the impact behaviour of Fe–2 mass% Ni sintered alloy. Mater Trans 46:805–811

    Article  CAS  Google Scholar 

  34. Malygin GA (2007) Analysis of the strain-rate sensitivity of flow stresses in nanocrystalline fcc and bcc metals. Phys Solid State 49:2266–2273

    Article  CAS  Google Scholar 

  35. Park WS, Yoo SW, Kim MH, Lee JM (2010) Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments. Mater Des 31:3630–3640

    Article  CAS  Google Scholar 

  36. Yu SS, Lu YB, Cai Y (2013) The strain-rate effect of engineering materials and its unified model. Lat Am J Solid Stru 10:833–844

    Article  Google Scholar 

  37. Qin K, Yang LM, Hu SS (2009) Mechanism of strain rate effect based on dislocation theory. Chin Phys Lett 26:036103

    Article  Google Scholar 

  38. Wang W, Ma Y, Id MD, Yang M, Jiang P, Yuan FP, Wu XL (2018) Strain rate effect on tensile behavior for a high specific strength steel: from quasi-static to intermediate strain rates. Metals 8:11

    Article  Google Scholar 

  39. Chen C, Lv B, Feng XY, Zhang FC, Beladi H (2018) Strain hardening and nanocrystallization behaviors in hadfield steel subjected to surface severe plastic deformation. Mater Sci Eng A 729:178–184

    Article  CAS  Google Scholar 

  40. Wei SZ, Xu LJ (2020) Review on research progress of steel and iron wear-resistant materials. Acta Metall Sin 56:523–538

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51831008 and U1810207) and the Key Research & Development Program of Hebei Province (Nos. 19211018D and 20311002D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Chen or Fucheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 329 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, F., Xu, H. et al. Molecular dynamics simulations of dislocation–coherent twin boundary interaction in face-centered cubic metals. J Mater Sci 57, 1833–1849 (2022). https://doi.org/10.1007/s10853-021-06837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06837-7

Navigation