Log in

Adsorptive removal of uremic toxins using Zr-based MOFs for potential hemodialysis membranes

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Protein-bound uremic toxins (PBUTs) are difficult to remove through dialytic procedures, and the accumulation of PBUTs is always associated with adverse symptoms in end-stage kidney disease. Hemoperfusions and novel membranes have been developed for the removal of PBUTs, but still suffer from low efficiency. Herein, we investigated the adsorption performance of three zirconium metal–organic frameworks (Zr-MOFs: UiO-66, UiO-66-SO3H, and UiO-66-(COOH)2) for two typical PBUTs (indoxyl sulfate, IS; hippuric acid, HA). We found that Zr-MOFs could adsorb PBUTs efficiently with a capacity of as high as 49.5 mg g−1 for IS and 38.3 mg g−1 for HA, respectively, due to the van der Waals interactions, Coulomb interactions, and ππ interactions. Density functional theory simulations demonstrated that H-bonding on basis of the –SO3H and –COOH groups could endow MOFs with better absorptivity. Further, to expand to practical hemodialysis applications, we incorporated Zr-MOFs into a polylactide (PLA) matrix to fabricate MOFs-based mixed matrix membranes (MMMs). The MMMs showed excellent in vitro biocompatibility and high water flux up to 260 L m−2 h−1. Under static conditions, the MMMs could remove HA and IS with a percentage of 75 and 78% in 4 h, respectively, whereas PLA membrane removed 12% of HA and 13% of IS. Under dynamic conditions, MMMs could remove 57% of IS and 54% of HA in 30 min; by contrast, PLA membrane only removed 2.9% of IS and 2.2% of HA. These MOFs-based MMMs with exceptional absorptivity, high water flux, and good biocompatibility might show great prospects in the foreground for the application of safe and efficient blood purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liabeuf S, Drüeke TB, Massy ZA (2011) Protein-bound uremic toxins: new insight from clinical studies. Toxins 3:911–919

    Article  CAS  Google Scholar 

  2. Vanholder R, Smet RD, Glorieux G, Argilés AA, Zidek W (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63:1934–1943

    Article  CAS  Google Scholar 

  3. Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81:640–650

    Article  CAS  Google Scholar 

  4. Vanholder R, Smet RD, Lameire N (2001) Protein-bound uremic solutes: the forgotten toxins. Kidney Int 59:266–270

    Article  Google Scholar 

  5. Ti**k MS, Wester M, Glorieux G, Gerritsen KGF, Sun J, Swart PC, Borneman Z, Wessling M, Vanholder R, Joles JA (2013) Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials 34:7819–7828

    Article  CAS  Google Scholar 

  6. Li QS, Yang J, Cai N, Zhang JM, Xu T, Zhao WQ, Guo HS, Zhu YN, Zhang L (2019) Hemocompatible hemoadsorbent for effective removal of protein-bound toxin in serum. J Coll Interf Sci 555:145–156

    Article  CAS  Google Scholar 

  7. Yamamoto S, Sato M, Sato Y, Wakamatsu T, Takahashi Y, Iguchi A, Omori K, Suzuki Y, Ei I, Kaneko Y, Goto S, Kazama J, Gejyo F, Narita I (2017) Adsorption of protein-bound uremic toxins through direct hemoperfusion with hexadecyl-immobilized cellulose beads in patients undergoing hemodialysis: adsorption of protein-bound uremic toxins. Artif Org 42:88–93

    Article  Google Scholar 

  8. Botella J, Ghezzi PM, Sanz-Moreno C (2000) Adsorption in hemodialysis. Kidney Int Suppl 76:S60-65

    Article  CAS  Google Scholar 

  9. Cheng YC, Fu CC, Hsiao YS, Chien CC, Juang RS (2018) Clearance of low molecular-weight uremic toxins p-cresol, creatinine, and urea from simulated serum by adsorption. J Mol Liq 252:203–210

    Article  CAS  Google Scholar 

  10. Grylewicz A, Mozia S (2021) Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: a review. Sep Purif Technol 256:117827

    Article  CAS  Google Scholar 

  11. Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ (2017) New directions for mixed-matrix membranes. Angew Chem Int Edit 56:9292–9310

    Article  CAS  Google Scholar 

  12. Geremia I, Bansal R, Stamatialis D (2019) In vitro assessment of mixed matrix hemodialysis membrane for achieving endotoxin-free dialysate combined with high removal of uremic toxins from human plasma. Acta Biomater 90:100–111

    Article  CAS  Google Scholar 

  13. Abidina MNA, Goha PS, Saida N, Ismaila AF, Othmana MHD, Abdullaha MS, Nga BC, Hasbullaha H, Kadirb SH, Kamalb F, Mansur S (2020) Polysulfone/amino-silanized poly(methyl methacrylate) dual layer hollow fiber membrane for uremic toxin separation. Sep Purif Technol 236:116216

    Article  Google Scholar 

  14. Fu CC, Hsiao YS, Ke JW, Syu WL, Liu TY, Liu SH, Juang RS (2020) Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes. Sep Purif Technol 245:116884

    Article  CAS  Google Scholar 

  15. ** E, Lee S, Kang EY, Kim Y, Choe WY (2020) Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products. Coordin Chem Rev 425:213526

    Article  CAS  Google Scholar 

  16. Rego RM, Kuriya G, Kurkuri MD, Kigga M (2021) MOF based engineered materials in water remediation: recent trends. J Hazard Mater 403:123605

    Article  CAS  Google Scholar 

  17. Sai T, Ran SY, Guo ZH, Fang ZP (2019) A Zr-based metal-organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos Part B Eng 176:107198.1-107198.10

    Article  Google Scholar 

  18. Kato S, Otake KI, Chen H, Akpinar I, Buru CT, Islamoglu T, Snurr RQ, Farha QK (2019) Zirconium-based metal-organic frameworks for the removal of protein-bound uremic toxin from human serum albumin. J Am Chem Soc 141:2568–2576

    Article  CAS  Google Scholar 

  19. Li Q, Zhao W, Guo H, Yang J, Zhang J, Liu M, Xu T, Chen Y, Zhang L (2020) Metal-organic framework traps with record-high bilirubin removal capacity for hemoperfusion therapy. ACS Appl Mater Interfaces 12:25546–25556

    Article  CAS  Google Scholar 

  20. CuChiaro H, Thai J, Schaffner N, Tuttle RR, Reynolds M (2020) Exploring the parameter space of p-cresyl sulfate adsorption in metal-organic frameworks. ACS Appl Mater Interf 12:22572–22580

    Article  CAS  Google Scholar 

  21. Qian S, **a L, Yang LF, Wang XB, Suo XL, **ng HB (2020) Defect-free mixed-matrix membranes consisting of anion-pillared metal-organic frameworks and poly(ionic liquid)s for separation of acetylene from ethylene. J Membr Sci 611:118329

    Article  CAS  Google Scholar 

  22. Chang X, Yang XF, Qiao Y, Wang S, Zhang MH, Xu J, Wang DH, Bu XH (2020) Confined heteropoly blues in defected Zr-MOF (bottle around ship) for high-efficiency oxidative desulfurization. Small 16:1906432

    Article  CAS  Google Scholar 

  23. Zhang F, Hu X, Roth EW, Kim Y, Nguyen ST (2020) Template-assisted, seed-mediated synthesis of hierarchically mesoporous core-shell uio-66: enhancing adsorption capacity and catalytic activity through iterative growth. Chem Mater 32:4292–4302

    Article  CAS  Google Scholar 

  24. Chen D, Yang W, Jiao L, Li L, Yu SH, Jiang HL (2020) Boosting catalysis of Pd nanoparticles in MOFs by pore wall engineering: the roles of electron transfer and adsorption energy. Adv Mater 32:2000041

    Article  CAS  Google Scholar 

  25. Gao A, Liu F, Xue L (2014) Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis. J Membr Sci 452:390–399

    Article  CAS  Google Scholar 

  26. Nie CX, Ma L, **a Y, He C, Deng J, Wang LR, Cheng C, Sun S, Zhao C (2015) Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. J Membr Sci 475:455–468

    Article  CAS  Google Scholar 

  27. Denny J, Cohen S (2015) In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew Chem Int Ed Engl 54:9029–9032

    Article  CAS  Google Scholar 

  28. Abdelhameed RM, Rehan M, Emam HE (2018) Figuration of Zr-based MOF@cotton fabric composite for potential kidney application. Carbohyd Polym 195:460–467

    Article  CAS  Google Scholar 

  29. Liu YH, Peng XY, Hu ZD, Yu MG, Fu JJ, Huang YG (2021) Fabrication of a novel nitrogen-containing porous carbon adsorbent for protein-bound uremic toxins removal. Mat Sci Eng C-Mater 121:111879

    Article  CAS  Google Scholar 

  30. Lefebvre C, Rubez G, Khartabil H, Boisson J, Contreras-García J, Hénon E (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys 19:17928–17936

    Article  CAS  Google Scholar 

  31. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  32. Ding L, Shao P, Luo Y, Yin X, Yu S, Fang L, Yang L, Yang J, Luo X (2020) Functionalization of UiO-66-NH2 with rhodanine via amidation: towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chem Eng J 382:123009

    Article  CAS  Google Scholar 

  33. Liu X, Demir N, Wu Z, Li K (2015) Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 137:6999–7002

    Article  CAS  Google Scholar 

  34. Zhuang S, Wang J (2021) Adsorptive removal of pharmaceutical pollutants by defective metal-organic framework UiO-66: insight into the contribution of defects. Chemosphere 281:130997

    Article  CAS  Google Scholar 

  35. Lu L, Yeow J (2017) An adsorption study of indoxyl sulfate by zeolites and polyethersulfone–zeolite composite membranes. Mater Des 120:328–335

    Article  CAS  Google Scholar 

  36. Pavlenko D, Giasafaki D, Charalambopoulou G, VanGefen E, Gerritsen K, Steriotis T, Stamatialis D (2017) Carbon adsorbents with dual porosity for efficient removal of uremic toxins and cytokines from human plasma. Sci Rep 7:14914

    Article  CAS  Google Scholar 

  37. Chen CQ, Chen DZ, **e SS, Quan HY, Luo XB, Guo L (2017) Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: analysis of surface interactions. ACS Appl Mater Interf 9:41043–41054

    Article  CAS  Google Scholar 

  38. Sun WL, Li HB, Li HM, Li S, Cao XQ (2019) Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: Batch experiment and DFT calculation. Chem Eng J 360:645–653

    Article  CAS  Google Scholar 

  39. Li SS, **e Y, **ang T, Ma L, He C, Sun SD, Zhao CS (2016) Heparin-mimicking polyethersulfone membranes-hemocompatibility, cytocompatibility, antifouling and antibacterial properties. J Membr Sci 498:135–146

    Article  CAS  Google Scholar 

  40. Su NC, Sun DT, Beavers CM, Britt DK, Queen WL, Urban JJ (2016) Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energ Environ Sci 9:922–931

    Article  CAS  Google Scholar 

  41. Mi YF, Xu G, Guo YS, Wu B, An QF (2020) Development of antifouling nanofiltration membrane with zwitterionic functionalized monomer for efficient dye/salt selective separation. J Membr Sci 601:117795

    Article  CAS  Google Scholar 

  42. Chi C, Sun BH, Zhou NL, Zhang M, Chu XH, Yuan P, Shen J (2018) Anticoagulant polyurethane substrates modified with poly (2-methacryloyloxyethyl phosphorylcholine) via SI-RATRP. Coll Surf B 163:301–308

    Article  CAS  Google Scholar 

  43. Paluck S, Maynard H (2017) Structure activity relationship of heparin mimicking polymer p(SS-co-PEGMA): effect of sulfonation and polymer size on FGF2-receptor binding. Polym Chem 8:4548–4556

    Article  CAS  Google Scholar 

  44. Cheng HJ, Liu YF, Hu YH, Ding YB, Lin SC, Cao W, Wang Q, Wu J, Muhammad F, Zhao XZ (2017) Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal Chem 89:11552–11559

    Article  CAS  Google Scholar 

  45. Wu MX, Yang YW (2017) Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 29:1606134

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 31870994, U1904206, 21975209, 21673197, and 51706191), the National Key R&D Program of China (Grant No. 2018YFA0209500), the Fundamental Research Funds for the Central Universities (Grant No. 20720190037), and the Natural Science Foundation of Fujian Province of China (Grant No. 2018J06003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Wang or Lei Ren.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Hou, Y., Zhou, Y. et al. Adsorptive removal of uremic toxins using Zr-based MOFs for potential hemodialysis membranes. J Mater Sci 57, 2909–2923 (2022). https://doi.org/10.1007/s10853-021-06783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06783-4

Navigation