Log in

Factors affecting the properties of superabsorbent polymer hydrogels and methods to improve their performance: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ability of superabsorbent polymers (SAPs) to absorb and retain a large amount of aqueous solution enables their applications in agriculture, medicine and water treatment. As a result, there were numerous studies reporting the present status and application prospects of raw materials and the mechanism of cross-linking agents. Conversely, there was a lack of research on the factors affecting SAP performance and the summaries of methods to improve performance. In this paper, a comprehensive and systematic review based on the structure and water absorption mechanism of SAPs was performed. The methods of improving the performance and main factors of the synthesis of SAPs, such as monomer, cross-linking agent, initiator, ion concentration, hydrophilic group, neutralization degree and particle size, were discussed. The improvement methods of salinity tolerance, reusability, water absorption and rate of SAP were explored. In addition, some applications and future research in SAPs are also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications—a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  2. Santos RVA, Costa GMN, Pontes KV (2019) Development of tailor-made superabsorbent polymers: review of key aspects from raw material to kinetic model. J Polym Environ 27:1861–1877. https://doi.org/10.1007/s10924-019-01485-0

    Article  CAS  Google Scholar 

  3. Lacoste C, Lopez-Cuesta J-M, Bergeret A (2019) Development of a biobased superabsorbent polymer from recycled cellulose for diapers applications. Eur Polym J 116:38–44. https://doi.org/10.1016/j.eurpolymj.2019.03.013

    Article  CAS  Google Scholar 

  4. Saruchi KV, Mittal H, Alhassan SM (2019) Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. Int J Biol Macromol 132:1252–1261. https://doi.org/10.1016/j.ijbiomac.2019.04.023

    Article  CAS  Google Scholar 

  5. Narjary B, Aggarwal P, Singh A, Chakraborty D, Singh R (2012) Water availability in different soils in relation to hydrogel application. Geoderma 187–188:94–101. https://doi.org/10.1016/j.geoderma.2012.03.002

    Article  CAS  Google Scholar 

  6. Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Rad JS (2019) A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 117:64–76. https://doi.org/10.1016/j.eurpolymj.2019.05.004

    Article  CAS  Google Scholar 

  7. Banerjee S, Siddiqui L, Bhattacharya SS et al (2012) Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int J Biol Macromol 50:198–206. https://doi.org/10.1016/j.ijbiomac.2011.10.020

    Article  CAS  Google Scholar 

  8. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23. https://doi.org/10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  9. Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohyd Polym 99:666–678. https://doi.org/10.1016/j.carbpol.2013.09.004

    Article  CAS  Google Scholar 

  10. Liu J, Khayat KH, Shi C (2020) Effect of superabsorbent polymer characteristics on rheology of ultra-high performance concrete. Cement Concr Compos 112:103636. https://doi.org/10.1016/j.cemconcomp.2020.103636

    Article  CAS  Google Scholar 

  11. Liu J, Farzadnia N, Shi C, Ma X (2019) Effects of superabsorbent polymer on shrinkage properties of ultra-high strength concrete under drying condition. Constr Build Mater 215:799–811. https://doi.org/10.1016/j.conbuildmat.2019.04.237

    Article  CAS  Google Scholar 

  12. Rehman TU, Shah LA, Khan M, Irfan M, Khattak NS (2019) Zwitterionic superabsorbent polymer hydrogels for efficient and selective removal of organic dyes. RSC Adv 9:18565–18577. https://doi.org/10.1039/c9ra02488c

    Article  CAS  Google Scholar 

  13. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289. https://doi.org/10.1002/pc.21046

    Article  CAS  Google Scholar 

  14. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  15. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477

    CAS  Google Scholar 

  16. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym-Plast Technol Eng 50:1475–1486. https://doi.org/10.1080/03602559.2011.593082

    Article  CAS  Google Scholar 

  17. Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4(2):25–31. https://doi.org/10.5923/j.ajps.20140402.01

    Article  Google Scholar 

  18. Omidian H, Zohuriaan-Mehr MJ, Bouhendi H (2003) Polymerization of sodium acrylate in inverse-suspension stabilized by sorbitan fatty esters. Eur Polym J 39:1013–1018. https://doi.org/10.1016/S0014-3057(02)00352-X

    Article  CAS  Google Scholar 

  19. Lim D-W, Song K-G, Yoon K-J, Ko S-W (2002) Synthesis of acrylic acid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization. Eur Polym J 38:579–586

    Article  CAS  Google Scholar 

  20. Cheng S, Liu X, Zhen J, Lei Z (2019) Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohydr Polym 225:115214. https://doi.org/10.1016/j.carbpol.2019.115214

    Article  CAS  Google Scholar 

  21. Xu JH, Tao J, Gan Y, Peng CS, Li Z (2014) Synthesis and swelling behaviours of APT-g-PAMPS superabsorbent composites by microwave irradiation. Mater Res Innov 18:377–381. https://doi.org/10.1179/1432891714z.000000000426

    Article  CAS  Google Scholar 

  22. Wang X, Zhang Y, Hao C, Dai X, Zhua F, Geb C (2014) Ultrasonic synthesis and properties of a sodium lignosulfonate grafted poly(acrylic acid-co-acryl amide) composite super absorbent polymer. New J Chem 38:6057–6063. https://doi.org/10.1039/C4NJ01266f

    Article  CAS  Google Scholar 

  23. Kong W, Li Q, Li X, Su Y, Yue Q, Gao B (2019) A biodegradable biomass-based polymeric composite for slow release and water retention. J Environ Manage 230:190–198. https://doi.org/10.1016/j.jenvman.2018.09.086

    Article  CAS  Google Scholar 

  24. Guilherme MR, Aouada FA, Fajardo AR et al (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017

    Article  CAS  Google Scholar 

  25. Verma AK, Sindhu SS, Singh A, Kumar A, Singh A, Chauhan VBS (2019) Conditioning effects of biodegradable superabsorbent polymer and vermiproducts on media properties and growth of gerbera. Ecol Eng 132:23–30. https://doi.org/10.1016/j.ecoleng.2019.03.012

    Article  Google Scholar 

  26. Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392. https://doi.org/10.1016/j.eurpolymj.2017.01.027

    Article  CAS  Google Scholar 

  27. Capanema NSV, Mansur AAP, Jesus ACd, Carvalho SM, Oliveira LCd, Mansur HS (2018) Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Bio Macromol 108:1218–1234. https://doi.org/10.1016/j.ijbiomac.2017.08.124

    Article  CAS  Google Scholar 

  28. Caló E, Khutoryanskiy VV (2014) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  29. Kua HW, Gupta S, Aday AN, Srubar WV (2019) Biochar-immobilized bacteria and superabsorbent polymers enable self-healing of fiber-reinforced concrete after multiple damage cycles. Cement Concr Compos 100:35–52. https://doi.org/10.1016/j.cemconcomp.2019.03.017

    Article  CAS  Google Scholar 

  30. Afridi S, Sikandar MA, Waseem M, Nasir H, Naseer A (2019) Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs). Constr Build Mater 217:530–542. https://doi.org/10.1016/j.conbuildmat.2019.05.101

    Article  CAS  Google Scholar 

  31. Lefever G, Tsangouri E, Snoeck D et al (2020) Combined use of superabsorbent polymers and nanosilica for reduction of restrained shrinkage and strength compensation in cementitious mortars. Constr Build Mater 251:118966. https://doi.org/10.1016/j.conbuildmat.2020.118966

    Article  CAS  Google Scholar 

  32. Ashkani M, Bouhendi H, Kabiri K, Rostami MR (2019) Synthesis of poly (2-acrylamido-2-methyl propane sulfonic acid) with high water absorbency and absorption under load (AUL) as concrete grade superabsorbent and its performance. Constr Build Mater 206:540–551. https://doi.org/10.1016/j.conbuildmat.2019.02.070

    Article  CAS  Google Scholar 

  33. Khan M, Lo IMC (2016) A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res 106:259–271. https://doi.org/10.1016/j.watres.2016.10.008

    Article  CAS  Google Scholar 

  34. Barakat MA, Sahiner N (2008) Cationic hydrogels for toxic arsenate removal from aqueous environment. J Environ Manage 88:955–961. https://doi.org/10.1016/j.jenvman.2007.05.003

    Article  CAS  Google Scholar 

  35. Lo IMC, Yin K, Tang SCN (2011) Combining material characterization with single and multi-oxyanion adsorption for mechanistic study of chromate removal by cationic hydrogel. J Environ Sci 23:1004–1010. https://doi.org/10.1016/s1001-0742(10)60507-4

    Article  CAS  Google Scholar 

  36. Yu Y, Peng R, Yang C, Tang Y (2015) Eco-friendly and cost-effective superabsorbent sodium polyacrylate composites for environmental remediation. J Mater Sci 50:5799–5808. https://doi.org/10.1007/s10853-015-9127-5

    Article  CAS  Google Scholar 

  37. Halake K, Kim HJ, Birajdar M, Kim BS (2016) Recently developed applications for natural hydrophilic polymers. J Ind Eng Chem 40:16–22. https://doi.org/10.1016/j.jiec.2016.06.011

    Article  CAS  Google Scholar 

  38. Suthar B, **ao HX, Klempner D, Frisch KC (1996) A review of kinetic studies on the formation of interpenetrating polymer networks. Polym Adv Technol 7:221–233

    Article  CAS  Google Scholar 

  39. Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. R Soc Chem 5:59745–59757. https://doi.org/10.1039/C5RA08522E

    Article  CAS  Google Scholar 

  40. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohyd Polym 84:40–53. https://doi.org/10.1016/j.carbpol.2010.12.023

    Article  CAS  Google Scholar 

  41. Arn Mignon NDB, Dubruel P, Vlierberghe SV (2019) Superabsorbent polymers: a review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur Polym J 117:165–178. https://doi.org/10.1016/j.eurpolymj.2019.04.054

    Article  CAS  Google Scholar 

  42. Behrouzi M, Moghadam PN (2018) Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohydr Polym 202:227–235. https://doi.org/10.1016/j.carbpol.2018.08.094

    Article  CAS  Google Scholar 

  43. Zhang J, Zhang F (2018) A new approach for blending waste plastics processing: superabsorbent resin synthesis. J Clean Prod 197:501–510. https://doi.org/10.1016/j.jclepro.2018.06.222

    Article  CAS  Google Scholar 

  44. Carmo IAD, de Almeida CG, Brandão HM, Cappa de Oliveira LF, Dias LG, de Souza N (2019) Experimental planning applied to the synthesis of superabsorbent polymer by acrylic acid graft in pectin extracted from passion fruit peel. Mater Res Express 6:095328. https://doi.org/10.1088/2053-1591/ab332f

    Article  CAS  Google Scholar 

  45. Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242. https://doi.org/10.1007/s10853-013-7918-0

    Article  CAS  Google Scholar 

  46. Narayanan A, Kartik R, Sangeetha E, Dhamodharan R (2018) Super water absorbing polymeric gel from chitosan, citric acid and urea: synthesis and mechanism of water absorption. Carbohyd Polym 191:152–160. https://doi.org/10.1016/j.carbpol.2018.03.028

    Article  CAS  Google Scholar 

  47. Thombare N, Mishra S, Siddiqui MZ, Jha U, Singh D, Mahajan GR (2018) Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr Polym 185:169–178. https://doi.org/10.1016/j.carbpol.2018.01.018

    Article  CAS  Google Scholar 

  48. Fang S, Wang G, Li P et al (2018) Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int J Biol Macromol 115:754–761. https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  CAS  Google Scholar 

  49. Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363–1370. https://doi.org/10.1016/j.eurpolymj.2004.02.016

    Article  CAS  Google Scholar 

  50. Sawut A, Yimit M, Sun W, Nurulla I (2014) Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohyd Polym 101:231–239. https://doi.org/10.1016/j.carbpol.2013.09.054

    Article  CAS  Google Scholar 

  51. Tally M, Atassi Y (2015) Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly(acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation. J Polym Res 22:181. https://doi.org/10.1007/s10965-015-0822-3

    Article  CAS  Google Scholar 

  52. Patel YN, Patel MP (2013) Adsorption of azo dyes from water by new poly (3-acrylamidopropyl)-trimethylammonium chloride-co-N, N-dimethylacrylamide superabsorbent hydrogel—Equilibrium and kinetic studies. J Environ Chem Eng 1:1368–1374. https://doi.org/10.1016/j.jece.2013.09.024

    Article  CAS  Google Scholar 

  53. Fang S, Wang G, **ng R et al (2019) Synthesis of superabsorbent polymers based on chitosan derivative graft acrylic acid-co-acrylamide and its property testing. Int J Biol Macromol 132:575–584. https://doi.org/10.1016/j.ijbiomac.2019.03.176

    Article  CAS  Google Scholar 

  54. Sahoo PK, Rana PK (2006) Synthesis and biodegradability of starch-g-ethyl methacrylate/sodium acrylate/sodium silicate superabsorbing composite. J Mater Sci 41:6470–6475. https://doi.org/10.1007/s10853-006-0504-y

    Article  CAS  Google Scholar 

  55. Fu L, Cao T, Lei Z, Chen H, Shi Y, Xu C (2016) Superabsorbent nanocomposite based on methyl acrylic acid modified bentonite and sodium polyacrylate: fabrication, structure and water uptake. Mater Des 94:322–329. https://doi.org/10.1016/j.matdes.2016.01.014

    Article  CAS  Google Scholar 

  56. Qiao D, Tu W, Wang Z et al (2019) Influence of crosslinker amount on the microstructure and properties of starch-based superabsorbent polymers by one-step preparation at high starch concentration. Int J Biol Macromol 129:679–685. https://doi.org/10.1016/j.ijbiomac.2019.02.019

    Article  CAS  Google Scholar 

  57. Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39:1341–1348. https://doi.org/10.1016/s0014-3057(02)00391-9

    Article  CAS  Google Scholar 

  58. Gómez-Mascaraque LG, Méndez JA, Fernández-Gutiérrez M, Vázquez B, San Román J (2014) Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose–chitosan. Acta Biomater 10:798–811. https://doi.org/10.1016/j.actbio.2013.10.003

    Article  CAS  Google Scholar 

  59. Freitas ED, Freitas VMS, Rosa PCP, Silva MGCd, Vieira MGA (2021) Development and evaluation of naproxen-loaded sericin/alginate beads for delayed and extended drug release using different covalent crosslinking agents. Mater Sci Eng C 118:111412. https://doi.org/10.1016/j.msec.2020.111412

    Article  CAS  Google Scholar 

  60. Jadhav NC, Kale RD (2021) Mustard oil thermosets using N-vinyl-2-pyrrolidone as crosslinking agent for scrap paper composites. Polym Bull. https://doi.org/10.1007/s00289-020-03519-3

    Article  Google Scholar 

  61. He R, Tan Y, Chen H, Wang Z, Zhang J, Fang J (2020) Preparation and properties of novel superabsorbent polymer (SAP) composites for cementitious materials based on modified metakaolin. Constr Build Mater 258:119575. https://doi.org/10.1016/j.conbuildmat.2020.119575

    Article  CAS  Google Scholar 

  62. Jahandideh A, Moini N, Kabiri K, Zohuriaan-Mehr MJ (2019) A green strategy to endow superabsorbents with stretchability and self-healability. Chem Eng J 370:274–286. https://doi.org/10.1016/j.cej.2019.03.149

    Article  CAS  Google Scholar 

  63. Shahzamani M, Taheri S, Roghanizad A, Naseri N, Dinari M (2020) Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea. Int J Biol Macromol 147:187–193. https://doi.org/10.1016/j.ijbiomac.2020.01.038

    Article  CAS  Google Scholar 

  64. Chuangqian C, Huiwu C, Jiebing Z, **g L, Bingqian Y (2008) Synthesis and characterization of super absorbent resin with salt-resistance. New Chem Mater 8:108

    Google Scholar 

  65. Irani M, Ismail H, Ahmad Z (2013) Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym Test 32:502–512. https://doi.org/10.1016/j.polymertesting.2013.01.001

    Article  CAS  Google Scholar 

  66. Ende MTa, Hariharan D, Peppas NA (1995) Factors influencing drug and protein transport and release from ionic hydrogels. React Polym 25:127–137

    Article  Google Scholar 

  67. Haixia Q, Jiugao Y, Tong L (2003) Superabsorbent polymer. Chem Bull 9:598–605. https://doi.org/10.14159/j.cnki.0441-3776.2003.09.004

    Article  Google Scholar 

  68. Liu J, Wang W, Wang A (2011) Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinyl alcohol) semi-IPN superabsorbent hydrogels. Polym Adv Technol 22:627–634. https://doi.org/10.1002/pat.1558

    Article  CAS  Google Scholar 

  69. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohyd Polym 66:229–245. https://doi.org/10.1016/j.carbpol.2006.03.006

    Article  CAS  Google Scholar 

  70. Chen Y, Tang H, Liu Y, Tan H (2016) Preparation and study on the volume phase transition properties of novel carboxymethyl chitosan grafted polyampholyte superabsorbent polymers. J Taiwan Inst Chem Eng 59:569–577. https://doi.org/10.1016/j.jtice.2015.09.011

    Article  CAS  Google Scholar 

  71. Raju MP, Raju KM (2001) Design and synthesis of superabsorbent polymers. J Appl Polym Sci 80:2635–2639

    Article  CAS  Google Scholar 

  72. Myung D, Waters D, Wiseman M et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657. https://doi.org/10.1002/pat.1134

    Article  CAS  Google Scholar 

  73. Povea MB, Monal WA, Cauich-Rodríguez JV, Pat AM, Rivero NB, Covas CP (2011) Interpenetrated chitosan-poly(acrylic acid-co-acrylamide) hydrogels. Synthesis, characterization and sustained protein release studies. Mater Sci Appl 02:509–520. https://doi.org/10.4236/msa.2011.26069

    Article  CAS  Google Scholar 

  74. Kim SJ, Yoon SG, Kim IY, Kim NG, Kim SI (2005) Swelling characterizations of the interpenetrating polymer network hydrogels composed of polymethacrylic acid and alginate. J Macromol Sci Part A 42:811–820. https://doi.org/10.1081/ma-200058669

    Article  Google Scholar 

  75. Yin L, Fei L, Tang C, Yin C (2007) Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network–super-porous hydrogel containing sodium alginate. Polym Int 56:1563–1571. https://doi.org/10.1002/pi.2306

    Article  CAS  Google Scholar 

  76. Murthy PSK, Mohan YM, Sreeramulu J, Raju KM (2006) Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): preparation, swelling and diffusion characteristics evaluation. React Funct Polym 66:1482–1493. https://doi.org/10.1016/j.reactfunctpolym.2006.04.010

    Article  CAS  Google Scholar 

  77. Wang J, Zhou X, **ao H (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754. https://doi.org/10.1016/j.carbpol.2013.01.036

    Article  CAS  Google Scholar 

  78. Wang W, Wang Q, Wang A (2011) pH-responsive carboxymethylcellulose-g-poly(sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromol Res 19:57–65. https://doi.org/10.1007/s13233-011-0112-9

    Article  CAS  Google Scholar 

  79. He G, Ke W, Chen X et al (2017) Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React Funct Polym 111:14–21. https://doi.org/10.1016/j.reactfunctpolym.2016.12.001

    Article  CAS  Google Scholar 

  80. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohyd Polym 80:1028–1036. https://doi.org/10.1016/j.carbpol.2010.01.020

    Article  CAS  Google Scholar 

  81. Ai-ling Z, Song Zhe LI, San-xi WS (2013) Effect of sulfonate group on salt-resistance of superabsorbent polymer. J Shenyang Univ Technol 35:520–524

    Google Scholar 

  82. Zhu S, **ao Z, Zhou X, Zhao S, Ye X, Li J (2019) Synthesis and surface modification of porous sodium polyacrylate superabsorbent resin. Eng Plast Appl 47:48

    Google Scholar 

  83. Bajpai SK, Bajpai M, Sharma L (2006) Investigation of water uptake behavior of superabsorbent polymers composed of N-vinyl-2-pyrrolidone and partially neutralized acrylic acid. J Macromol Sci Part A 43:1323–1337. https://doi.org/10.1080/10601320600814648

    Article  CAS  Google Scholar 

  84. Wei Q (2014) Fast-swelling porous starch-g-poly(acrylic acid) superabsorbents. Iran Polym J 23:637–643. https://doi.org/10.1007/s13726-014-0257-4

    Article  CAS  Google Scholar 

  85. Zamani A, Henriksson D, Taherzadeh MJ (2010) A new foaming technique for production of superabsorbents from carboxymethyl chitosan. Carbohyd Polym 80:1091–1101. https://doi.org/10.1016/j.carbpol.2010.01.029

    Article  CAS  Google Scholar 

  86. Omidian H, Hashemi SA, Sammes PG, Meldrum I (1999) Modified acrylic-based superabsorbent polymers(dependence on particle size and salinity). Polymer 40:1753–1761

    Article  CAS  Google Scholar 

  87. Olad A, Pourkhiyabi M, Gharekhani H, Doustdar F (2018) Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics. Carbohydr Polym 190:295–306. https://doi.org/10.1016/j.carbpol.2018.02.088

    Article  CAS  Google Scholar 

  88. Kabiri K, Hesarian S, Zohuriaan-Mehr MJ et al (2011) Superabsorbent polymer composites: does clay always improve properties? J Mater Sci 46:6718–6725. https://doi.org/10.1007/s10853-011-5627-0

    Article  CAS  Google Scholar 

  89. Zhu Z, Sun H, Qin X et al (2012) Preparation of poly(acrylic acid)–graphite oxide superabsorbent nanocomposites. J Mater Chem 22:4811–4817. https://doi.org/10.1039/C2JM14210D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No: 31860237).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxu Zhang or Ziqiang Lei.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, P., Liu, S. et al. Factors affecting the properties of superabsorbent polymer hydrogels and methods to improve their performance: a review. J Mater Sci 56, 16223–16242 (2021). https://doi.org/10.1007/s10853-021-06306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06306-1

Navigation