Log in

Nitrogen-rich microporous carbon framework as an efficient polysulfide host for lithium-sulfur batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries are recognized as a promising high-energy-density and low-cost energy storage devices. However, the sulfur cathode suffers from poor cycling stability resulting from the serious polysulfide shuttle. Herein, we develop a nitrogen-rich and highly porous carbon polyhedron for effectively hosting sulfur. The carbon host manifests an ultrahigh specific surface area of 3400 m2 g−1, a dominated micropore volume of 0.96 cm3 g−1, and a high-level nitrogen do** of 8.3 at.%. Such an intriguing structure could suppress the polysulfide shuttle via physical confinement by micropores and strong chemical adsorption by polar nitrogen species. Moreover, the electrically conductive carbon enables a substantially enhanced electrochemical kinetics. Consequently, the carbon/sulfur composite electrode delivers an ultralow fading rate of 0.033% per cycle at 2 C over 500 cycles and superior rate capability (483 mAh g−1 at a high 5 C rate). The present study demonstrates the potential use of nitrogen-rich porous carbon framework as an efficient polysulfide host for lithium-sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Li P, Ma L, Wu T, Ye H, Zhou J, Zhao F, Han N, Wang Y, Wu Y, Li Y, Lu J (2018) Chemical immobilization and conversion of active polysulfides directly by copper current collector: a new approach to enabling stable room-temperature Li-S and Na-S batteries. Adv Energy Mater 8(22):1800624. https://doi.org/10.1002/aenm.201800624

    Article  CAS  Google Scholar 

  2. Lin H, Zhang S, Zhang T, Ye H, Yao Q, Zheng GW, Lee JY (2019) Simultaneous cobalt and phosphorous do** of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries. Adv Energy Mater 9(38):1902096. https://doi.org/10.1002/aenm.201902096

    Article  CAS  Google Scholar 

  3. Chen W, Lei T, Lv W, Hu Y, Yan Y, Jiao Y, He W, Li Z, Yan C, **ong J (2018) Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery. Adv Mater 30:e1804084. https://doi.org/10.1002/adma.201804084

    Article  CAS  Google Scholar 

  4. Wang Z, Shen J, Liu J, Xu X, Liu Z, Hu R, Yang L, Feng Y, Liu J, Shi Z, Ouyang L, Yu Y, Zhu M (2019) Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv Mater 31(33):e1902228. https://doi.org/10.1002/adma.201902228

    Article  CAS  Google Scholar 

  5. Li Q, Zhao Y, Liu H, Xu P, Yang L, Pei K, Zeng Q, Feng Y, Wang P, Che R (2019) Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 13(10):11921–11934. https://doi.org/10.1021/acsnano.9b06005

    Article  CAS  Google Scholar 

  6. Sun W, Liu C, Li Y, Luo S, Liu S, Hong X, **e K, Liu Y, Tan X, Zheng C (2019) Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries. ACS Nano 13(10):12137–12147. https://doi.org/10.1021/acsnano.9b06629

    Article  CAS  Google Scholar 

  7. Liu H, Chen Z, Zhou L, Pei K, Xu P, **n L, Zeng Q, Zhang J, Wu R, Fang F, Che R, Sun D (2019) Interfacial charge field in hierarchical yolk-shell nanocapsule enables efficient immobilization and catalysis of polysulfides conversion. Adv Energy Mater 9(37):1901667. https://doi.org/10.1002/aenm.201901667

    Article  CAS  Google Scholar 

  8. Wang J, Yang G, Chen J, Liu Y, Wang Y, Lao CY, ** K, Yang D, Harris CJ, Yan W, Ding S, Kumar RV (2019) Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Adv Energy Mater 9(38):1902001. https://doi.org/10.1002/aenm.201902001

    Article  CAS  Google Scholar 

  9. Lin L, Pei F, Peng J, Fu A, Cui J, Fang X, Zheng N (2018) Fiber network composed of interconnected yolk-shell carbon nanospheres for high-performance lithium-sulfur batteries. Nano Energy 54:50–58. https://doi.org/10.1016/j.nanoen.2018.10.001

    Article  CAS  Google Scholar 

  10. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506. https://doi.org/10.1038/nmat2460

    Article  CAS  Google Scholar 

  11. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525. https://doi.org/10.1021/ja206955k

    Article  CAS  Google Scholar 

  12. Li W, Zhang Q, Zheng G, Seh ZW, Yao H, Cui Y (2013) Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett 13(11):5534–5540. https://doi.org/10.1021/nl403130h

    Article  CAS  Google Scholar 

  13. Wang Y, Zhang R, Pang Y-c, Chen X, Lang J, Xu J, **ao C, Li H, ** K, Ding S (2019) Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater 16:228–235. https://doi.org/10.1016/j.ensm.2018.05.019

    Article  Google Scholar 

  14. Wang H, Zhang Q, Yao H, Liang Z, Lee HW, Hsu PC, Zheng G, Cui Y (2014) High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett 14(12):7138–7144. https://doi.org/10.1021/nl503730c

    Article  CAS  Google Scholar 

  15. Kong W, Yan L, Luo Y, Wang D, Jiang K, Li Q, Fan S, Wang J (2017) Ultrathin MnO2/Graphene Oxide/Carbon nanotube interlayer as efficient polysulfide-trap** shield for high-performance Li-S batteries. Adv Funct Mater 27(18):1606663. https://doi.org/10.1002/adfm.201606663

    Article  CAS  Google Scholar 

  16. Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA (2017) Chemical bonding and physical trap** of sulfur in mesoporous magnéli Ti4O7 microspheres for high-performance Li-S battery. Adv Energy Mater 7(4):1601616. https://doi.org/10.1002/aenm.201601616

    Article  CAS  Google Scholar 

  17. Liu Z, Zhou L, Ge Q, Chen R, Ni M, Utetiwabo W, Zhang X, Yang W (2018) Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. ACS Appl Mater Interfaces 10(23):19311–19317. https://doi.org/10.1021/acsami.8b03830

    Article  CAS  Google Scholar 

  18. **ao K, Wang J, Chen Z, Qian Y, Liu Z, Zhang L, Chen X, Liu J, Fan X, Shen ZX (2019) Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-Doped carbon composites for lithium-sulfur batteries. Small 15(25):e1901454. https://doi.org/10.1002/smll.201901454

    Article  CAS  Google Scholar 

  19. Zhang J, Shi Y, Ding Y, Peng LL, Zhang WK, Yu GH (2017) A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium-sulfur batteries. Adv Energy Mater 7(14):1602876. https://doi.org/10.1002/aenm.201602876

    Article  CAS  Google Scholar 

  20. Su D, Cortie M, Wang G (2017) Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv Energy Mater 7(8):1602014. https://doi.org/10.1002/aenm.201602014

    Article  CAS  Google Scholar 

  21. Wang C, Wang F, Liu Z, Zhao Y, Liu Y, Yue Q, Zhu H, Deng Y, Wu Y, Zhao D (2017) N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41:674–680. https://doi.org/10.1016/j.nanoen.2017.10.025

    Article  CAS  Google Scholar 

  22. **a QY, Yang H, Wang M, Yang M, Guo QB, Wan LM, **a H, Yu Y (2017) High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater 7(22):1701336. https://doi.org/10.1002/aenm.201701336

    Article  CAS  Google Scholar 

  23. Lu XF, Yu L, Zhang J, Lou XWD (2019) Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction. Adv Mater 31(30):e1900699. https://doi.org/10.1002/adma.201900699

    Article  CAS  Google Scholar 

  24. Zheng Y, Zheng S, Xue H, Pang H (2019) Metal–organic frameworks for lithium–sulfur batteries. J Mater Chem A 7(8):3469–3491. https://doi.org/10.1039/c8ta11075a

    Article  CAS  Google Scholar 

  25. Jiang H, Liu XC, Wu Y, Shu Y, Gong X, Ke FS, Deng H (2018) Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew Chem Int Ed 57(15):3916–3921. https://doi.org/10.1002/anie.201712872

    Article  CAS  Google Scholar 

  26. Yang Y, Wang Z, Jiang T, Dong C, Mao Z, Lu C, Sun W, Sun K (2018) A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trap** and catalytic conversion of polysulfides for greatly improved lithium–sulfur batteries. J Mater Chem A 6(28):13593–13598. https://doi.org/10.1039/c8ta05176c

    Article  CAS  Google Scholar 

  27. Wu HB, Wei S, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chemistry 19(33):10804–10808. https://doi.org/10.1002/chem.201301689

    Article  CAS  Google Scholar 

  28. Chen K, Sun ZH, Fang RP, Shi Y, Cheng HM, Li F (2018) Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv Funct Mater 28(38):1707592. https://doi.org/10.1002/adfm.201707592

    Article  CAS  Google Scholar 

  29. Song R-S, Wang B, Ruan T-T, Wang L, Luo H, Wang F, Gao T-T, Wang D-L (2018) A three-dimensional cathode matrix with bi-confinement effect of polysulfide for lithium-sulfur battery. Appl Surf Sci 427:396–404. https://doi.org/10.1016/j.apsusc.2017.09.013

    Article  CAS  Google Scholar 

  30. Jiang Y, Liu H, Tan X, Guo L, Zhang J, Liu S, Guo Y, Zhang J, Wang H, Chu W (2017) Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl Mater Interfaces 9(30):25239–25249. https://doi.org/10.1021/acsami.7b04432

    Article  CAS  Google Scholar 

  31. Rana M, Kim J, Peng L, Lim H, Kaiser R, Ran L, Luo B, Han Z, Hossain MSA, Lu X, Gentle I, Yamauchi Y, Knibbe R (2020) Impact of micropores and over dopants to mitigate lithium polysulfides shuttle high surface area of ZIF-8 derived nanoporous carbons. ACS Applied Energy Mater 3(6):5523–5532. https://doi.org/10.1021/acsaem.0c00509

    Article  CAS  Google Scholar 

  32. Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y (2015) Hollow Zn/Co zif particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew Chem Int Ed 54(37):10889–10893. https://doi.org/10.1002/anie.201504242

    Article  CAS  Google Scholar 

  33. Liu J, Yu L, Wu C, Wen Y, Yin K, Chiang FK, Hu R, Liu J, Sun L, Gu L, Maier J, Yu Y, Zhu M (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-Ion batteries. Nano Lett 17(3):2034–2042. https://doi.org/10.1021/acs.nanolett.7b00083

    Article  CAS  Google Scholar 

  34. Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, **ong F, Cui Y (2016) Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv Mater 28(44):9797–9803. https://doi.org/10.1002/adma.201602172

    Article  CAS  Google Scholar 

  35. Deng DR, Xue F, Jia YJ, Ye JC, Bai CD, Zheng MS, Dong QF (2017) Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 11(6):6031–6039. https://doi.org/10.1021/acsnano.7b01945

    Article  CAS  Google Scholar 

  36. Tian W, ** B, Feng Z, Li H, Feng J, **ong S (2019) Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries. Adv Energy Mater 9(36):1901896. https://doi.org/10.1002/aenm.201901896

    Article  CAS  Google Scholar 

  37. Zhang L, Liu D, Muhammad Z, Wan F, **e W, Wang Y, Song L, Niu Z, Chen J (2019) Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater 31(40):e1903955. https://doi.org/10.1002/adma.201903955

    Article  CAS  Google Scholar 

  38. Sun Z, Zhang J, Yin L, Hu G, Fang R, Cheng HM, Li F (2017) Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun 8:14627. https://doi.org/10.1038/ncomms14627

    Article  Google Scholar 

  39. Wang J-G, ** D, Liu H, Zhang C, Zhou R, Shen C, **e K, Wei B (2016) All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy 22:524–532. https://doi.org/10.1016/j.nanoen.2016.02.051

    Article  CAS  Google Scholar 

  40. Zhang X, Wang JG, Liu H, Liu H, Wei B (2017) Facile synthesis of V2O5 hollow spheres as advanced cathodes for high-performance lithium-ion batteries. Materials 10(1):77. https://doi.org/10.3390/ma10010077

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is funded by the National Natural Science Foundation of China (51772249 and 51821091), Fundamental Research Funds for the Central Universities (G2017KY0308 and 3102019JC005), Natural Science Foundation (2019JLM-26), Innovation Program for Talent (2019KJXX-066), and Post-doctoral Program of Shaanxi Province (2018BSHTDZZ16). The authors also thank the Analytical & Testing Center of Northwestern Polytechnical University for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gan Wang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhou, H. & Wang, JG. Nitrogen-rich microporous carbon framework as an efficient polysulfide host for lithium-sulfur batteries. J Mater Sci 56, 3364–3374 (2021). https://doi.org/10.1007/s10853-020-05433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05433-5

Navigation