Log in

Grain boundary character distribution in the CoCrMo alloy processed by selective laser melting and post-heat treatment

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The evolution of grain boundary character distribution (GBCD) in the CoCrMo alloys processed by SLM and post-heat treatments (aging and solid solution) has been investigated by the electron backscatter diffraction (EBSD) and transmission electron microscope techniques. A high fraction of Σ3n (n = 1, 2, 3) grain boundaries and the corresponding clusters occur in the solid solution-treated samples at 1150 °C, which indicates GBCD optimization is somewhat realized. The coherent and incoherent Σ3 boundaries were distinguished via the single-section trace analysis method based on EBSD measurements. Σ3 boundaries in the SLMed and aged samples were determined as incoherent, while those in the solid solution-treated sample are coherent. Regular ε precipitation did not occur in the solid solution-treated samples as in the aged samples. Instead, stacking fault bands associated with coherent Σ3 twin boundaries are dominant. It suggests that post-heat treatment has a significant influence on the GBCD, especially the Σ3 grain boundary characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Takaichi A, Nakamoto T, Joko N, Nomura N, Tsutsumi Y, Migita S, Doi H, Kurosu S, Chibaf A, Wakabayashi N, Igarashi Y, Hanawa T (2013) Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 21:67–76. https://doi.org/10.1016/j.jmbbm.2013.01.021

    Article  CAS  Google Scholar 

  2. Culmone C, Smit G, Breedveld P (2019) Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf 27:461–473. https://doi.org/10.1016/j.addma.2019.03.015

    Article  Google Scholar 

  3. Zhu ZG, An XH, Lu WJ, Li ZM, Ng FL, Liao XZ, Ramamurty U, Nai SML, Wei J (2019) Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy. Mater Res Lett 7:453–459. https://doi.org/10.1080/21663831.2019.1650131

    Article  CAS  Google Scholar 

  4. **n XZ, Chen J, **ang N, Gong Y, Wei B (2014) Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dent Mater 30(3):263–270. https://doi.org/10.1016/j.dental.2013.11.013

    Article  CAS  Google Scholar 

  5. Averyanova M, Bertrand P, Verquin B (2011) Manufacture of Co–Cr dental crowns and bridges by selective laser melting technology. Virtual Phys Prototyp 6(3):179–185. https://doi.org/10.1080/17452759.2011.619083

    Article  Google Scholar 

  6. Koutsoukis T, Zinelis S, Eliades G, Al-Wazzan K, Rifaiy MA, Al Jabbari YS (2015) Selective laser melting technique of Co–Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont 24(4):303–312. https://doi.org/10.1111/jopr.12268

    Article  Google Scholar 

  7. Kajima Y, Takaichi A, Nakamoto T, Kimura T, Yogo Y, Ashida M, Doi H, Nomura N, Takahashi H, Hanawa T, Wakabayashi N (2016) Fatigue strength of Co–Cr–Mo alloy clasps prepared by selective laser melting. J Mech Behav Biomed Mater 59:446–458. https://doi.org/10.1016/j.jmbbm.2016.02.032

    Article  CAS  Google Scholar 

  8. Gu DD, Shi QM, Lin KJ, ** LX (2018) Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting. Addit Manuf 22:265–278. https://doi.org/10.1016/j.addma.2018.05.019

    Article  CAS  Google Scholar 

  9. Liu SY, Li HQ, Qin CX, Zong R, Fang XY (2020) The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater Des. https://doi.org/10.1016/j.matdes.2020.108642

    Article  Google Scholar 

  10. Seki E, Kajima Y, Takaichi A, Kittikundecha N, Cho HHW, Htat HL, Doi H, Hanawa T, Wakabayashi N (2019) Effect of heat treatment on the microstructure and fatigue strength of CoCrMo alloys fabricated by selective laser melting. Mater Lett 24:553–556. https://doi.org/10.1016/j.matlet.2019.02.085

    Article  CAS  Google Scholar 

  11. Wang M, Li HQ, Lou DJ, Qin CX, Jiang J, Fang XY, Guo YB (2019) Microstructure anisotropy and its implication in mechanical properties of biomedical titanium alloy processed by electron beam melting. Mater Sci Eng A 743(16):123–137. https://doi.org/10.1016/j.msea.2018.11.038

    Article  CAS  Google Scholar 

  12. Yan C, Li Y, Kurosu S, Yamanaka K, Tang N, Koizumi Y, Chiba A (2014) Effects of sigma phase and carbide on the wear behavior of CoCrMo alloys in Hanks’ solution. Wear 310(1–2):51–62. https://doi.org/10.1016/j.wear.2013.12.010

    Article  CAS  Google Scholar 

  13. Li JH, Li FG, Ma XK, Li J, Liang S (2018) Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared Al–Zn–Mg–Cu alloy. Mater Sci Eng A 732(8):53–62. https://doi.org/10.1016/j.msea.2018.06.097

    Article  CAS  Google Scholar 

  14. Bettayeb M, Maurice V, Klein LH, Lapeire L, Verbeken K, Marcus P (2018) Nanoscale intergranular corrosion and relation with grain boundary character as studied In situ on copper. J Electrochem Soc 165(11):C835–C841. https://doi.org/10.1149/2.1341811jes

    Article  Google Scholar 

  15. Tao HM, Zhou CS, Zheng YY, Hong YJ, Zheng JY, Zhang L (2019) Anomalous evolution of corrosion behaviour of warm-rolled type 304 austenitic stainless steel. Corros Sci 154:268–276. https://doi.org/10.1016/j.corsci.2019.04.025

    Article  CAS  Google Scholar 

  16. Watanabe T (1984) An approach to grain boundary design of strong and ductile polycrystals. Res Mech 11(1):47–84

    CAS  Google Scholar 

  17. He S, Li C, Zheng J, Ren JY, Han YH (2018) Effect of deformation temperature on dynamic recrystallization and CSL grain boundary distribution of Fe–36%Ni invar alloy. J Mater Eng Perform 27(1):2759–2765. https://doi.org/10.1007/s11665-018-3126-z

    Article  CAS  Google Scholar 

  18. Ratanaphan S, Raabe D, Sarochawikasit R (2017) Grain boundary character distribution in electroplated nanotwinned copper. J Mater Sci 52(7):4070–4085. https://doi.org/10.1007/s10853-016-0670-5

    Article  CAS  Google Scholar 

  19. Ding J, Zhang Z, Wang J (2015) Micro-characterization of dissimilar metal weld joint for connecting pipe nozzle to safe-end in generation III nuclear power plant. Acta Metall Sin 51(4):425–439. https://doi.org/10.11900/0412.1961.2014.00299

    Article  CAS  Google Scholar 

  20. Ma JQ, Zhong F, Li SS (2017) Microstructure and grain boundary morphology evolution of a novel Co–9Al–9W–2Ta–0.02B alloy doped with yttrium. Rare Met 36(12):1–11. https://doi.org/10.1007/s12598-016-0830-4

    Article  CAS  Google Scholar 

  21. Shimada M, Kokawa H, Wang ZJ (2002) Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater 50(9):2331–2341. https://doi.org/10.1016/S1359-6454(02)00064-2

    Article  CAS  Google Scholar 

  22. Chong Y, Liu ZD, Godfrey A (2014) The application of grain boundary engineering to a nickel base superalloy for 973 K (700 °C) USC power plants. Metall Mater Trans A 1(1):58–66. https://doi.org/10.1007/s40553-014-0009-6

    Article  CAS  Google Scholar 

  23. Fang XY, Li HQ, Wang M, Li C, Guo YB (2018) Characterization of texture and grain boundary distributions of selected laser melted Inconel 625 alloy. Mater Lett 143(9):182–190. https://doi.org/10.1016/j.matchar.2018.02.008

    Article  CAS  Google Scholar 

  24. Laleh M, Hughes AE, Xu W, Haghdadi N, Wang K, Cizek P (2019) On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting. Corros Sci 161:108189. https://doi.org/10.1016/j.corsci.2019.108189

    Article  CAS  Google Scholar 

  25. Sangid MD, Book TA, Naragani D, Rotella J, Ravi P, Finch A (2018) Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing. Addit Manuf 22:479–496. https://doi.org/10.1016/j.addma.2018.04.032

    Article  CAS  Google Scholar 

  26. Melia MA, Carroll JD, Whetten SR, Esmaeely SN, Locke J, White E (2019) Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy. Addit Manuf 29:100833. https://doi.org/10.1016/j.addma.2019.100833

    Article  CAS  Google Scholar 

  27. Cao Y, Bai P, Liu F, Hou X, Guo Y (2020) Effect of the solution temperature on the precipitates and grain evolution of IN718 fabricated by laser additive manufacturing. Materials 13(2):340. https://doi.org/10.3390/ma13020340

    Article  CAS  Google Scholar 

  28. Yamanaka K, Mori M, Kuramoto K, Chiba A (2014) Development of new Co–Cr–W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des 55:987–998. https://doi.org/10.1016/j.matdes.2013.10.052

    Article  CAS  Google Scholar 

  29. Li HQ, Wang M, Lou DJ, **a WL, Fang XY (2020) Microstructural features of biomedical cobalt–chromium–molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment. J Mater Sci Technol 45:145–156. https://doi.org/10.1016/j.jmst.2019.11.031

    Article  Google Scholar 

  30. Brandon DG (1966) The structure of high angle grain boundaries. Acta Met 14:1479–1484

    Article  CAS  Google Scholar 

  31. Bunkholt S, Marthinsen K, Nes E (2014) Subgrain structures characterized by electron backscatter diffraction (EBSD). Mater Sci Forum 794–796:3–08. https://doi.org/10.4028/www.scientific.net/MSF.794-796.3

    Article  CAS  Google Scholar 

  32. Humphreys FJ (2004) Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD). Scr Mater 51(8):771–776. https://doi.org/10.1016/j.scriptamat.2004.05.016

    Article  CAS  Google Scholar 

  33. Wright SI, Larsen RJ (2002) Extracting twins from orientation imaging microscopy scan data. J Microsc Oxf 205(Pt 3):245–252. https://doi.org/10.1046/j.1365-2818.2002.00992.x

    Article  CAS  Google Scholar 

  34. Brewer L, Othon M, Young L, Angeliu T (2006) Misorientation map** for visualization of plastic deformation via electron back-scattered diffraction. Microsc Microanal 12(1):85–91. https://doi.org/10.1017/s1431927606060120

    Article  CAS  Google Scholar 

  35. Wang WG, Guo H (2007) Effects of thermo-mechanical iterations on the grain boundary character distribution of Pb–Ca–Sn–Al alloy. Mater Sci Eng A 445–446:155–162. https://doi.org/10.1016/j.msea.2006.09.034

    Article  CAS  Google Scholar 

  36. Gleiter H (1969) The formation of annealing twins. Acta Metall 17(12):1421–1428. https://doi.org/10.1016/0001-6160(69)90004-2

    Article  CAS  Google Scholar 

  37. Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52(14):4067–4081. https://doi.org/10.1016/j.actamat.2004.05.031

    Article  CAS  Google Scholar 

  38. Mahajan S, Pande CS, Imam MA, Rath BB (1997) Formation of annealing twins in f.c.c crystals. Acta Materialia. https://doi.org/10.1016/s1359-6454(96)00336-9

    Article  Google Scholar 

  39. Pradhan SK, Bhuyan P, Mandal S (2018) Individual and synergistic influences of microstructural features on intergranular corrosion behavior in extra-low carbon type 304L austenitic stainless steel. Corros Sci 139:319–332. https://doi.org/10.1016/j.corsci.2018.05.014

    Article  CAS  Google Scholar 

  40. Balkowiec A, Michalski J, Matysiak H, Kurzydlowski KJ (2011) Influence of grain boundaries misorientation angle on intergranular corrosion in 2024-T3 aluminium. Mater Sci 29:205–311. https://doi.org/10.2478/s13536-011-0050-4

    Article  CAS  Google Scholar 

  41. Shi F, Tian PC, Jia N (2016) Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corros Sci 107:49–59. https://doi.org/10.1016/j.corsci.2016.02.019

    Article  CAS  Google Scholar 

  42. Fang XY, Wang WG, Cai ZX, Qin CX, Zhou BX (2010) The evolution of cluster of grains with Σ3n relationship in austenitic stainless steel. Mater Sci Eng A 527:1571–1576. https://doi.org/10.1016/j.msea.2009.10.034

    Article  CAS  Google Scholar 

  43. Fang XY, Zhang K, Guo H, Wang WG, Zhou BX (2008) Twin-induced grain boundary engineering in 304 stainless steel. Mater Sci Eng A 487(1–2):7–13. https://doi.org/10.1016/j.msea.2007.09.075

    Article  CAS  Google Scholar 

  44. Fang XY, Wang WG, Guo H, Qin CX, Zhou BX (2009) Distribution and corrosion behaviors of the triple junctions in a grain boundary engineered 304 stainless steel. Int J Mod Phys B 23:1110–1115. https://doi.org/10.1142/s0217979209060543

    Article  CAS  Google Scholar 

  45. Aust KT, Erb U, Palumbo G (1994) Interface control for resistance to intergranular cracking. Mater Sci Eng A 176(1):329–334. https://doi.org/10.1016/0921-5093(94)90995-4

    Article  CAS  Google Scholar 

  46. Palumbo G, Aust KT (1990) A coincident axial direction (CAD) approach to the structure of triple junctions in polycrystalline materials. Scr Metall Mater 24(9):1771–1776. https://doi.org/10.1016/0956-716X(90)90544-Q

    Article  CAS  Google Scholar 

  47. Barr CM, Leff AC, Demott RW, Doherty RD, Taheri ML (2018) Unraveling the origin of twin related domains and grain boundary evolution during grain boundary engineering. Acta Mater 144:281–291. https://doi.org/10.1016/j.actamat.2017.10.007

    Article  CAS  Google Scholar 

  48. Nishiyama Z (1978) Martensite transformation. Academic, New York

    Google Scholar 

  49. Remy L (1977) Kinetics of strain-induced fcc → hcp martensitic transformation. Metall Mater Trans A 8(2):253–258. https://doi.org/10.1007/BF02661637

    Article  Google Scholar 

  50. Koizumi Y, Suzuki S, Yamanaka K, Byoung-Soo L, Sato K, Li Y, Kurosu S, Matsumoto H, Chiba A (2013) Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Mater 61:1648–1661. https://doi.org/10.1016/j.actamat.2012.11.041

    Article  CAS  Google Scholar 

  51. Yamanaka K, Mori M, Kurosu S, Matsumoto H, Chiba A (2009) Ultrafine grain refinement of biomedical Co–29Cr–6Mo alloy during conventional hot-compression deformation. Metall Mater Trans A 40(8):1980–1994. https://doi.org/10.1007/s11661-009-9879-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key R&D Plan of the Ministry of Science and Technology (2018YFB1105900), Shandong Province Key R&D Project (Grant Number 2018GGX103017), and Zibo City and SDUT Integration Project (Grant Number 2018ZBXC154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoying Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Shao, S., Ren, X. et al. Grain boundary character distribution in the CoCrMo alloy processed by selective laser melting and post-heat treatment. J Mater Sci 55, 16780–16790 (2020). https://doi.org/10.1007/s10853-020-05237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05237-7

Navigation