Log in

Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Layered transition metal dichalcogenides especially MoS2 is favorable to be the low-cost alternative to Pt-based electrocatalysts for water splitting. Defect-rich MoS2 nanosheets exhibiting enlarged interlayer spacing of 9.2 Å were synthesized via a solvothermal method, in which trithiocyanuric acid (TTCA) was used as a sulfur source. In addition, we synthesized MoS2 with L-cysteine for comparison. To improve the conductivity and quantity of active exposed sites of MoS2 nanosheets, the rGO nanosheets were introduced to hybridize with MoS2. With the addition of rGO, the MoS2/rGO hybrids exhibit different morphologies and larger interlayer spacing of 9.5 Å. Furthermore, the enhanced performance for hydrogen evolution reaction is attributed to the synergistic effect between the MoS2 nanosheets and rGO substrates. MoS2/rGO-2 possesses an onset overpotential of 118 mV, a small Tafel slope of 51 mV/dec, high double-layer capacitance (Cdl) of 15.27 mF/cm2, and superior cycling stability over 1000 cycles in acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502. https://doi.org/10.1021/cr100246c

    Article  CAS  Google Scholar 

  2. Zhang L, Sun L, Huang Y et al (2017) Hydrothermal synthesis of N-doped RGO/MoSe2 composites and enhanced electro-catalytic hydrogen evolution. J Mater Sci 52:13561–13571. https://doi.org/10.1007/s10853-017-1417-7

    Article  CAS  Google Scholar 

  3. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM (2016) Energy and fuels from electrochemical interfaces. Nat Mater 16:57. https://doi.org/10.1038/nmat4738

    Article  CAS  Google Scholar 

  4. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180. https://doi.org/10.1039/C4CS00448E

    Article  CAS  Google Scholar 

  5. Dasgupta NP, Liu C, Andrews S, Prinz FB, Yang P (2013) Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J Am Chem Soc 135:12932–12935. https://doi.org/10.1021/ja405680p

    Article  CAS  Google Scholar 

  6. Chen Y, Yu G, Chen W et al (2017) Nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J Am Chem Soc 139:12370–12373. https://doi.org/10.1021/jacs.7b06337

    Article  CAS  Google Scholar 

  7. Huang H, Huang W, Yang Z et al (2017) Strongly coupled MoS2 nanoflake–carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction. J Mater Chem A 5:1558–1566. https://doi.org/10.1039/C6TA09612C

    Article  CAS  Google Scholar 

  8. Wu J, Li B, Shao Y, Wu X, Sun Y (2019) Tuning the morphology and phase of MoSe2 by using a mixed solvent of water and dimethyl formamide and its enhanced electrocatalytic activity for hydrogen evolution reaction. J Mater Sci 55:2129–2138. https://doi.org/10.1007/s10853-019-04084-5

    Article  CAS  Google Scholar 

  9. Gao M-R, Xu Y-F, Jiang J, Yu S-H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017. https://doi.org/10.1039/C2CS35310E

    Article  CAS  Google Scholar 

  10. Tan C, Zhang H (2015) Epitaxial growth of hetero-Nanostructures based on ultrathin two-dimensional nanosheets. J Am Chem Soc 137:12162–12174. https://doi.org/10.1021/jacs.5b03590

    Article  CAS  Google Scholar 

  11. Li Y, He B, Liu X et al (2019) Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution. Int J Hydrogen Energy 44:8070–8078. https://doi.org/10.1016/j.ijhydene.2019.02.089

    Article  CAS  Google Scholar 

  12. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, ** S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277. https://doi.org/10.1021/ja404523s

    Article  CAS  Google Scholar 

  13. Wang H, Lu Z, Kong D, Sun J, Hymel TM, Cui Y (2014) Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8:4940–4947. https://doi.org/10.1021/nn500959v

    Article  CAS  Google Scholar 

  14. Liu Y, Liu J, Li Z et al (2018) Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution. Int J Hydrogen Energy 43:13946–13952. https://doi.org/10.1016/j.ijhydene.2018.02.039

    Article  CAS  Google Scholar 

  15. Hinnemann B, Moses PG, Bonde J et al (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309. https://doi.org/10.1021/ja0504690

    Article  CAS  Google Scholar 

  16. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267. https://doi.org/10.1039/C1SC00117E

    Article  CAS  Google Scholar 

  17. Wu Z, Fang B, Wang Z et al (2013) MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction. ACS Catal 3:2101–2107. https://doi.org/10.1021/cs400384h

    Article  CAS  Google Scholar 

  18. Yan Y, **a B, Ge X, Liu Z, Wang J-Y, Wang X (2013) Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl Mater Interfaces 5:12794–12798. https://doi.org/10.1021/am404843b

    Article  CAS  Google Scholar 

  19. Zhao Y, Bo X, Guo L (2017) An efficient electrocatalysts for the hydrogen evolution reaction based on molybdenum dioxide nanoparticles embedded porous graphene nanocomposite. Int J Hydrogen Energy 42:5569–5576. https://doi.org/10.1016/j.ijhydene.2016.07.198

    Article  CAS  Google Scholar 

  20. Kibsgaard J, Tuxen A, Knudsen KG et al (2010) Comparative atomic-scale analysis of promotional effects by late 3D-transition metals in MoS2 hydrotreating catalysts. J Catal 272:195–203. https://doi.org/10.1016/j.jcat.2010.03.018

    Article  CAS  Google Scholar 

  21. Merki D, Vrubel H, Rovelli L, Fierro S, Hu X (2012) Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 3:2515–2525. https://doi.org/10.1039/C2SC20539D

    Article  CAS  Google Scholar 

  22. Zhang H, Li Y, Xu T et al (2015) Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution. J Mater Chem A 3:15020–15023. https://doi.org/10.1039/C5TA03410H

    Article  CAS  Google Scholar 

  23. Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219–231. https://doi.org/10.1039/B803857K

    Article  Google Scholar 

  24. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11:4168–4175. https://doi.org/10.1021/nl2020476

    Article  CAS  Google Scholar 

  25. Lu Z, Zhang H, Zhu W et al (2013) In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chem Commun 49:7516–7518. https://doi.org/10.1039/C3CC44143A

    Article  CAS  Google Scholar 

  26. Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26:2344–2353. https://doi.org/10.1021/cm500347r

    Article  CAS  Google Scholar 

  27. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963. https://doi.org/10.1038/nmat3439

    Article  CAS  Google Scholar 

  28. **e J, Zhang H, Li S et al (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807–5813. https://doi.org/10.1002/adma.201302685

    Article  CAS  Google Scholar 

  29. **e J, Zhang J, Li S et al (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135:17881–17888. https://doi.org/10.1021/ja408329q

    Article  CAS  Google Scholar 

  30. Yang J, Voiry D, Ahn SJ et al (2013) Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem Int Ed 52:13751–13754. https://doi.org/10.1002/anie.201307475

    Article  CAS  Google Scholar 

  31. Chang Y-H, Lin C-T, Chen T-Y et al (2013) Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater 25:756–760. https://doi.org/10.1002/adma.201202920

    Article  CAS  Google Scholar 

  32. Li F, Zhang L, Li J et al (2015) Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22. https://doi.org/10.1016/j.jpowsour.2015.04.173

    Article  CAS  Google Scholar 

  33. Li Y, Wang H, **e L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299. https://doi.org/10.1021/ja201269b

    Article  CAS  Google Scholar 

  34. Gao M-R, Chan MKY, Sun Y (2015) Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun 6:7493. https://doi.org/10.1038/ncomms8493

    Article  Google Scholar 

  35. Tang Y-J, Wang Y, Wang X-L et al (2016) Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv Energy Mater 6:1600116. https://doi.org/10.1002/aenm.201600116

    Article  CAS  Google Scholar 

  36. Liu A, Zhao L, Zhang J, Lin L, Wu H (2016) Solvent-assisted oxygen incorporation of vertically aligned MoS2 ultrathin nanosheets decorated on reduced graphene oxide for improved electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 8:25210–25218. https://doi.org/10.1021/acsami.6b06031

    Article  CAS  Google Scholar 

  37. **e K, Yuan K, Li X et al (2017) Superior potassium ion storage via vertical MoS2 “Nano-Rose” with expanded interlayers on graphene. Small 13:1701471. https://doi.org/10.1002/smll.201701471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21878031), the Liaoning Province Natural Science Foundation (No. 20180550770) and the Liaoning Revitalization Talents Program (No. XLYC1802124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aoli Dong, Yu Wang or Tao Ding.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Dong, X., Wang, Y. et al. Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution. J Mater Sci 55, 6637–6647 (2020). https://doi.org/10.1007/s10853-020-04478-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04478-w

Navigation