Log in

Investigation of compositionally tunable localized surface plasmon resonances (LSPRs) of a series of indium tin oxide nanocrystals prepared by one-step solvothermal synthesis

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of novel nonmetallic plasmonic materials, indium tin oxide (ITO) nanocrystals (NCs), with tunable do** ratios of tin (from 0 up to 25%), were synthesized through a one-step solvothermal method. Cubic-shaped NCs with good crystallinity and uniform-size distribution (~ 17 nm), for all do** ratios, were confirmed through the X-ray diffraction patterns and transmission electron microscopy images. As inferred from X-ray photoelectron spectroscopy and inductively coupled plasma measurements, Sn is preferentially distributed close to the surface of ITO NCs. In particular, localized surface plasmon resonances (LSPRs) were tuned from near- to mid-infrared regions only by varying the do** ratios, which is of interest, for example, to avoid high-loss levels associated with metallic nanoparticles in LSPR biosensing applications. Our work provides a series of reliable and accessible materials for the researchers who need different wavelengths of LSPR frequencies in near-infrared and/or mid-infrared regions. It will benefit the research and development of nonmetallic plasmonic materials in a wider application scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23(13):1612–1619

    Article  CAS  Google Scholar 

  2. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  3. Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43(10):3426–3452

    Article  CAS  Google Scholar 

  4. Raphael MP, Christodoulides JA, Delehanty JB, Long JP, Pehrsson PE, Byers JM (2013) Quantitative LSPR imaging for biosensing with single nanostructure resolution. Biophys J 104(1):30–36

    Article  CAS  Google Scholar 

  5. Zhang H, Yang S, Zhou Q, Yang L, Wang P, Fang Y (2016) The suitable condition of using LSPR model in SERS: LSPR effect versus chemical effect on microparticles surface-modified with nanostructures. Plasmonics 12(1):77–81

    Article  Google Scholar 

  6. Lounis SD, Runnerstrom EL, Llordes A, Milliron DJ (2014) Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. J Phys Chem Lett 5(9):1564–1574

    Article  CAS  Google Scholar 

  7. Cottat M, Thioune N, Gabudean AM, Lidgi-Guigui N, Focsan M, Astilean S, Lamy de la Chapelle M (2012) Localized surface plasmon resonance (LSPR) biosensor for the protein detection. Plasmonics 8(2):699–704

    Article  Google Scholar 

  8. Zheng Z, Tachikawa T, Majima T (2015) Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J Am Chem Soc 137(2):948–957

    Article  CAS  Google Scholar 

  9. Sun M, Huang Y, **a L, Chen X, Xu H (2011) The pH-controlled plasmon-assisted surface photocatalysis reaction of 4-aminothiophenol to p,p’-dimercaptoazobenzene on Au, Ag, and Cu colloids. J Phys Chem C 115(19):9629–9636

    Article  CAS  Google Scholar 

  10. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294

    Article  CAS  Google Scholar 

  11. Rhodes C, Franzen S, Maria JP, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100(5):054905

    Article  Google Scholar 

  12. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43(11):3908–3920

    Article  CAS  Google Scholar 

  13. Scuderi M, Esposito M, Todisco F, Simeone D, Tarantini I, De Marco L, De Giorgi M, Nicotra G, Carbone L, Sanvitto D, Passaseo A, Gigli G, Cuscunà M (2016) Nanoscale study of the tarnishing process in electron beam lithography-fabricated silver nanoparticles for plasmonic applications. J Phys Chem C 120(42):24314–24323

    Article  CAS  Google Scholar 

  14. Ma K, Zhou N, Yuan M, Li DS, Yang D (2014) Tunable surface plasmon resonance frequencies of monodisperse indium tin oxide nanoparticles by controlling composition, size, and morphology. Nanoscale Res Lett 9:547

    Article  Google Scholar 

  15. Kim J, Agrawal A, Krieg F, Bergerud A, Milliron DJ (2016) The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett 16(6):3879–3884

    Article  CAS  Google Scholar 

  16. Llordes A, Garcia G, Gazquez J, Milliron DJ (2013) Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500(7462):323–326

    Article  CAS  Google Scholar 

  17. Routzahn AL, White SL, Fong LK, Jain PK (2012) Plasmonics with doped quantum dots. Isr J Chem 52(11–12):983–991

    Article  CAS  Google Scholar 

  18. Novitsky A, Uskov AV, Gritti C, Protsenko IE, Kardynał BE, Lavrinenko AV (2014) Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas. Prog Photovolt 22(4):422–426

    Article  CAS  Google Scholar 

  19. Habeeb AA, Long H, Bao L, Wang K, Wang B, Lu P (2016) Surface plasmonic resonances and enhanced IR spectra in GZO nano-triangle arrays. Mater Lett 172:36–39

    Article  CAS  Google Scholar 

  20. Fang X, Mak CL, Dai J, Li K, Ye H, Leung CW (2014) ITO/Au/ITO sandwich structure for near-infrared plasmonics. ACS Appl Mater Interfaces 6(18):15743–15752

    Article  CAS  Google Scholar 

  21. Faucheaux JA, Stanton AL, Jain PK (2014) Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities. J Phys Chem Lett 5(6):976–985

    Article  CAS  Google Scholar 

  22. Awasthi V, Garg V, Sengar BS, Pandey SK, Aaryashree Kumar S, Mukherjee C, Mukherjee S (2017) Impact of sputter-instigated plasmonic features in TCO films: for ultrathin photovoltaic applications. Appl Phys Lett 110(10):103903

    Article  Google Scholar 

  23. Zhang C, Wu K, Ling B, Li X (2016) Conformal tco-semiconductor-metal nanowire array for narrowband and polarization-insensitive hot-electron photodetection application. J Photon Energy 6(4):042502

    Article  Google Scholar 

  24. Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J Am Chem Soc 131:17736–17737

    Article  CAS  Google Scholar 

  25. Gilstrap RA, Capozzi CJ, Carson CG, Erhardt RA, Ummers CJ (2008) Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion. Adv Mater 20:4163–4166

    CAS  Google Scholar 

  26. D’apuzzo F, Esposito M, Cuscunà M, Cannavale A, Gambino S, Lio GE, De Luca A, Gigli G, Lupi S (2018) Mid-infrared plasmonic excitation in indium tin oxide microhole arrays. ACS Photon 5(6):2431–2436

    Article  Google Scholar 

  27. Kim KY, Park SB (2004) Preparation and property control of nano-sized indium tin oxide particle. Mater Chem Phys 86(1):210–221

    Article  CAS  Google Scholar 

  28. Wang T, Radovanovic PV (2011) Free electron concentration in colloidal indium tin oxide nanocrystals determined by their size and structure. J Phys Chem C 115:406–413

    Article  CAS  Google Scholar 

  29. Lee J, Lee S, Li G, Petruska MA, Paine DC, Sun S (2012) A facile solution-phase approach to transparent and conducting ito nanocrystal assemblies. J Am Chem Soc 134(32):13410–13414

    Article  CAS  Google Scholar 

  30. Ba J, Rohlfing DF, Feldhoff A, Brezesinski T, Djerdj I, Wark M, Niederberger M (2006) Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration. Chem Mater 18:2848–2854

    Article  CAS  Google Scholar 

  31. Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed Engl 47(29):5292–5304

    Article  CAS  Google Scholar 

  32. Bühler G, Thölmann D, Feldmann C (2007) One-pot synthesis of highly conductive indium tin oxide nanocrystals. Adv Mater 19(17):2224–2227

    Article  Google Scholar 

  33. Buonsanti R, Milliron DJ (2013) Chemistry of doped colloidal nanocrystals. Chem Mater 25(8):1305–1317

    Article  CAS  Google Scholar 

  34. Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Do** semiconductor nanocrystals. Nature 436(7047):91–94

    Article  CAS  Google Scholar 

  35. Agrawal A, Singh A, Yazdi S, Singh A, Ong GK, Bustillo K, Johns RW, Ringe E, Milliron DJ (2017) Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett 17(4):2611–2620

    Article  CAS  Google Scholar 

  36. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A, Anders A, Richardson TJ, Milliron DJ (2011) Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 11(10):4415–4420

    Article  CAS  Google Scholar 

  37. Johns RW, Bechtel HA, Runnerstrom EL, Agrawal A, Lounis SD, Milliron DJ (2016) Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals. Nat Commun 7:11583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Natural Science Foundation of China (Grant Nos. 21327803, 21711540292, 21773080, 21611130173). W. R. is grateful to the Postdoctoral Science Foundation of China (Grant No. 2014M561286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Ruan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Lei, S., Li, Y. et al. Investigation of compositionally tunable localized surface plasmon resonances (LSPRs) of a series of indium tin oxide nanocrystals prepared by one-step solvothermal synthesis. J Mater Sci 54, 2918–2927 (2019). https://doi.org/10.1007/s10853-018-3050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3050-5

Keywords

Navigation