Log in

Mo–Cu pseudoalloys by combustion synthesis and spark plasma sintering

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The in situ preparation of Mo–Cu from copper molybdate in the combustion mode with the help of thermo-kinetic coupling approach using the combined magnesium/carbon reducer to provide controllable thermal conditions is reported. To determine the optimum processing parameters, the stepwise nature of reaction mechanism in the CuMoO4–Mg–C system was comprehensively explored with the help of a copper wedge quenching technique combined with X-ray diffraction and microstructural analysis of intermediate and final products. Precursor compositions of CuMoO4(I)–1.2 Mg–2.2C and CuMoO4(II)–1.5 Mg–1.6C reduced at 3 MPa pressure in a temperature range of 1350–1450 °C were found to be the optimal conditions for the combustion formation of Mo–Cu nanocomposite with spherical particles of 50–100 nm in diameter and narrow size distribution. Combustion-synthesized Mo–Cu powders were consolidated by means of spark plasma sintering (SPS) at 1000 °C and pressure of 100 MPa in vacuum. The bulk material has demonstrated twofold enhanced microhardness as compared to microhardness of mechanically alloyed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wang D, **aojia D, Pan Zh, Aokui S, Bohua D (2014) The sintering behavior of ultra-fine Mo–Cu composite powders and the sintering properties of the composite compacts. Int J Refract Metal Hard Mater 42:240–245

    Article  CAS  Google Scholar 

  2. Srinivasan D, Subramanian PR (2007) Kirkendall porosity during thermal treatment of Mo–Cu nanomultilayers. Mater Sci Eng, A 459(1–2):145–150

    Article  Google Scholar 

  3. Chwa SO, Klein D, Liao H, Dembinski L, Coddet Ch (2006) Temperature dependence of microstructure and hardness of vacuum plasma sprayed Cu–Mo composite coatings. Surf Coat Technol 200:5682–5686

    Article  CAS  Google Scholar 

  4. Chen G, Wu G, Jiang L, Zhu D, Sun D (2007) Microstructure and mechanical properties of high densification Mo/Cu composites. Key Eng Mater 353:2883–2886

    Article  Google Scholar 

  5. Ziebert C, Stueber M, Leiste H, Ulrich S, Holleck H (2011) Nanoscale PVD multilayer coatings. Encyclopedia of materials: science and technology. 1st edn. Elsevier Ltd., p 9

  6. Chen G-Q, Wu G-H, Zhu D-Z, Zhang Q, Jiang L-T (2005) Microstructure and thermal and electric conductivities of high dense Mo/Cu composites. Trans Nonferr Met Soc China 15(3):110–114

    CAS  Google Scholar 

  7. Belay OV, Kiselev SP (2011) Molecular dynamics simulation of deformation and fracture of a Cu–Mo nanocomposite plate under uniaxial tension. Phys Mesomech 14(3–4):145–153

    Article  Google Scholar 

  8. Fang F, Zhou YY, Yang W (2014) In-situ SEM study of temperature dependent tensile behavior of wrought molybdenum. Int J Refract Metal Hard Mater 42:120–125

    Article  CAS  Google Scholar 

  9. Minakova V, Pachek AP, Kryachko LA, Kresanova AP, Zatovskii VG (2000) Texture formation in the cold rolling of pseudo-alloys. Powder Metall Met Ceram 39(1–2):78–84

    Article  CAS  Google Scholar 

  10. Davis JR (2001) Copper and copper alloys. ASM International, USA

    Google Scholar 

  11. Wang X, Hu L, Wang H, Wang E (2011) Microstructure and properties of Mo–50%Cu alloy by mechanical milling and pressure-assisted solid state sintering. Rare Met Mater Eng 40(5):902–905

    Google Scholar 

  12. Martínez VP, Aguilar C, Marín J, Ordoñez S, Castro F (2007) Mechanical alloying of Cu–Mo powder mixtures and thermodynamic study of solubility. Mater Lett 61:929–933

    Article  Google Scholar 

  13. Aguilar C, Guzman D, Rojas PA, Ordoñez S, Rios R (2011) Simple thermodynamic model of the extension of solid solution of Cu–Mo alloys processed by mechanical alloying. Mater Chem Phys 128:539–542

    Article  CAS  Google Scholar 

  14. Aguilar C, Ordoñez S, Marín J, Castro F, Martínez V (2007) Study and methods of analysis of mechanically alloyed Cu–Mo powders. Mater Sci Eng, A 464:288–294

    Article  Google Scholar 

  15. Sabooni S, Mousavi T, Karimzadeh F (2010) Mechanochemical assisted synthesis of Cu(Mo)/Al2O3 nanocomposite. J Alloy Compd 497:95–99

    Article  CAS  Google Scholar 

  16. Sun S, Wang D, Wu Zh, Cheng Q (2011) Mechanochemical synthesis of Mo–Cu nanocomposite powders. J Alloy Compd 509:74–77

    Article  Google Scholar 

  17. Li Y, Wang D, Sun A (2013) Preparation and characterization of Mo–Cu nanocomposite powders by chemical liquid reduction process. J Cent South Univ 20:587–591

    Article  CAS  Google Scholar 

  18. Kang Z, Chen W, Ding B (2005) Fabrication of composite nanopowders of MoCu by sol-gel. Rare Met Mater Eng 34(6):990–993

    CAS  Google Scholar 

  19. Peng S, Jigui Ch, Lei W, **gsong Zh, Yifang W, Yanbo C (2009) Preparation and characterization of Mo–15 Cu superfine powders by a gelatification-reduction process. J Alloy Compd 476:226–230

    Article  Google Scholar 

  20. Zhao M, Wang J, Liu W, Zhou M (2009) Preparation and reduction behavior of Mo–Cu powders by sol–gel. J Phys: Conf Ser 188:1–7

    Google Scholar 

  21. Sun A, Wang D, Wu Z, Zan X (2010) Synthesis of ultra-fine Mo–Cu nanocomposites by coreduction of mechanical-activated CuMoO4–MoO3 mixtures at low temperature. J Alloy Compd 505:588–591

    Article  CAS  Google Scholar 

  22. Li Z, Zhai Y (2010) Preparation of Mo60-Cu40 composite nano-powder by hydrogen reaction. Rare Met Mater Eng 39(1):6–9

    Article  Google Scholar 

  23. Minasyan T, Aydinyan S, Kharatyan S (2016) Combustion synthesis of Mo–Cu composite powders from oxide precursors with various proportions of metals. Chem J Armen 69(1–2):47–57

    Google Scholar 

  24. Merzhanov AG (2011) Thermally coupled SHS reactions. Int J Self Propag High Temp Synth 20(1):61–63

    Article  Google Scholar 

  25. Kharatyan SL, Merzhanov AG (2012) Coupled SHS reactions as a useful tool for synthesis of materials: an overview. Int J Self Propag High Temp Synth 21(1):59–73

    Article  Google Scholar 

  26. Shiryaev AA (1995) Thermodynamic of SHS: modern approach. Int J Self Propag High Temp Synth 4(4):351–362

    CAS  Google Scholar 

  27. Aydinyan SV, Kirakosyan HV, Kharatyan SL (2016) Cu–Mo composite powders obtained by combustion-coreduction process. Int J Refract Metal Hard Mater 54:455–463

    Article  CAS  Google Scholar 

  28. Yang GL, Yu Q, Feng DK, Wang P (2015) Fabrication of functionally graded W(Mo)–Cu composites by explosive consolidation. Mater Res Innovations 19:S1–45

    Google Scholar 

  29. Johnson JL, German RM (2001) Role of solid-state skeletal sintering during processing of Mo–Cu composites. Metall Mater Trans A 32(3):605–613

    Article  Google Scholar 

  30. **nfeng S (2015) Microstructure and properties of Cu–50Mo contact materials prepared by spark plasma sintering process. Spec Cast Nonferr Alloys 11:042

    Google Scholar 

  31. Wang JL, Lin WS, Jiang ZW, Yang GL, Duan LH (2014) Fabrication and structure properties of fiber-structured Mo–Cu composites. Chin J Nonferr Met 24(1):174–178

    CAS  Google Scholar 

  32. Kumar A, Jayasankar K, Debata M, Mandal A (2015) Mechanical alloying and properties of immiscible Cu–20 wt% Mo alloy. J Alloy Compd 647:1040–1047

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the State Committee of Science of the Republic of Armenia (Project #13_1D192). This research was also supported by the Estonian Research Council under the personal research grants PUT1063 (I. Hussainova) and MOBJD166 (S. Aydinyan). Authors are greatly acknowledged Dr. Olga Volobujeva (project IUT-T4) and Mr. Rainer Traksmaa for providing SEM and XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hussainova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minasyan, T., Kirakosyan, H., Aydinyan, S. et al. Mo–Cu pseudoalloys by combustion synthesis and spark plasma sintering. J Mater Sci 53, 16598–16608 (2018). https://doi.org/10.1007/s10853-018-2787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2787-1

Keywords

Navigation