Log in

Mesoscale models of interface mechanics in crystalline solids: a review

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Theoretical and computational methods for representing mechanical behaviors of crystalline materials in the vicinity of planar interfaces are examined and compared. Emphasis is on continuum-type resolutions of microstructures at the nanometer and micrometer levels, i.e., mesoscale models. Grain boundary interfaces are considered first, with classes of models encompassing sharp interface, continuum defect (i.e., dislocation and disclination), and diffuse interface types. Twin boundaries are reviewed next, considering sharp interface and diffuse interface (e.g., phase field) models as well as pseudo-slip crystal plasticity approaches to deformation twinning. Several classes of models for evolving failure interfaces, i.e., fracture surfaces, in single crystals and polycrystals are then critically summarized, including cohesive zone approaches, continuum damage theories, and diffuse interface models. Important characteristics of compared classes of models for a given physical behavior include complexity, generality/flexibility, and predictive capability versus number of free or calibrated parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Rohrer GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Clayton JD (2011a) Nonlinear mechanics of crystals. Springer, Dordrecht

    Book  Google Scholar 

  4. Yadav S, Ravichandran G (2003) Penetration resistance of laminated ceramic/polymer structures. Int J Impact Eng 28:557–574

    Article  Google Scholar 

  5. Clayton JD (2015) Modeling and simulation of ballistic penetration of ceramic-polymer-metal layered systems. Math Probl Eng 2015:709498

    Article  Google Scholar 

  6. Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484

    Article  Google Scholar 

  7. Rice JR (1968) Mathematical analysis in the mechanics of fracture. In: Liebowitz H (ed) Fracture: an advanced treatise. Academic Press, New York, pp 191–311

    Google Scholar 

  8. Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, Cambridge

    Google Scholar 

  9. Hughes DA, Hansen N, Bammann DJ (2003) Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr Mater 48:147–153

    Article  Google Scholar 

  10. Boiko VS, Garber RI, Kosevich AM (1994) Reversible crystal plasticity. AIP Press, New York

    Google Scholar 

  11. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157

    Article  Google Scholar 

  12. Dongare AM, LaMattina B, Irving DL, Rajendran AM, Zikry MA, Brenner DW (2012) An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Modelling Simul Mater Sci Eng 20:035007

    Article  Google Scholar 

  13. Zhigilei LV, Volkov AN, Dongare AM (2012) Computational study of nanomaterials: from large-scale atomistic simulations to mesoscopic modeling. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Berlin, pp 470–480

    Google Scholar 

  14. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys Lett 44:783–787

    Article  Google Scholar 

  15. Knap J, Ortiz M (2001) An analysis of the quasicontinuum method. J Mech Phys Solids 49:1899–1923

    Article  Google Scholar 

  16. Clayton JD, Chung PW (2006) An atomistic-to-continuum framework for nonlinear crystal mechanics based on asymptotic homogenization. J Mech Phys Solids 54:1604–1639

    Article  Google Scholar 

  17. Chung PW, Clayton JD (2007) Multiscale modeling of point and line defects in cubic crystals. Int J Multiscale Comput Eng 5:203–226

    Article  Google Scholar 

  18. Emmerich H (2003) The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models. Springer, Berlin

    Google Scholar 

  19. Schoenfeld SE, Wright TW (2003) A failure criterion based on material instability. Int J Solids Struct 40:3021–3037

    Article  Google Scholar 

  20. Wallace DC (2003) Statistical physics of crystals and liquids: a guide to highly accurate equations of state. World Scientific, Singapore

    Book  Google Scholar 

  21. Clayton JD, Tonge A (2015) A nonlinear anisotropic elastic–inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int J Solids Struct 64–65:191–207

    Article  Google Scholar 

  22. Bunge H-J (1982) Texture analysis in materials science: mathematical methods. Butterworths, London

    Google Scholar 

  23. Randle V, Engler O (2000) Introduction to texture analysis: macrotexture, microtexture, and orientation map**. Gordon and Breach, Amsterdam

    Google Scholar 

  24. Grimmer H, Bollmann W, Warrington DH (1974) Coincident-site lattices and complete pattern-shift lattices in cubic crystals. Acta Crystallogr A 30:197–207

    Article  Google Scholar 

  25. Watanabe T (1984) An approach to grain boundary design for strong and ductile polycrystals. Res Mech 11:47–84

    Google Scholar 

  26. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211

    Article  Google Scholar 

  27. Clayton JD, Kraft RH, Leavy RB (2012) Mesoscale modeling of nonlinear elasticity and fracture in ceramic polycrystals under dynamic shear and compression. Int J Solids Struct 49:2686–2702

    Article  Google Scholar 

  28. Clayton JD (2013a) Mesoscale modeling of dynamic compression of boron carbide polycrystals. Mech Res Commun 49:57–64

    Article  Google Scholar 

  29. Clayton JD, McDowell DL (2003a) A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int J Plast 19:1401–1444

    Article  Google Scholar 

  30. Clayton JD, Knap J (2015a) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169

    Article  Google Scholar 

  31. Clayton JD (2013b) Nonlinear Eulerian thermoelasticity for anisotropic crystals. J Mech Phys Solids 61:1983–2014

    Article  Google Scholar 

  32. Clayton JD (2014a) Analysis of shock compression of strong single crystals with logarithmic thermoelastic–plastic theory. Int J Eng Sci 79:1–20

    Article  Google Scholar 

  33. Thurston RN (1974) Waves in solids. In: Truesdell C (ed) Handbuch der Physik, vol 4. Springer, Berlin, pp 109–308

    Google Scholar 

  34. Teodosiu C (1982) Elastic models of crystal defects. Springer, Berlin

    Book  Google Scholar 

  35. Clayton JD (2014b) Shock compression of metal crystals: a comparison of Eulerian and Lagrangian elastic–plastic theories. Int J Appl Mech 6:1450048

    Article  Google Scholar 

  36. Clayton JD (2015b) Crystal thermoelasticity at extreme loading rates and pressures: analysis of higher-order energy potentials. Mech Lett 3:113–122

    Article  Google Scholar 

  37. Meyers MA, Ashworth E (1982) A model for the effect of grain size on the yield stress of metals. Philos Mag A 46:737–759

    Article  Google Scholar 

  38. Clayton JD, Schroeter BM, Graham S, McDowell DL (2002) Distributions of stretch and rotation in OFHC Cu. J Eng Mater Technol 124:302–313

    Article  Google Scholar 

  39. Harren SV, Deve HE, Asaro RJ (1988) Shear band formation in plane strain compression. Acta Metall 36:2435–2480

    Article  Google Scholar 

  40. Harren SV, Asaro RJ (1989) Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J Mech Phys Solids 37(2):191–232

    Article  Google Scholar 

  41. Clayton JD (2009a) Modeling effects of crystalline microstructure, energy storage mechanisms, and residual volume changes on penetration resistance of precipitate-hardened aluminum alloys. Compos B Eng 40:443–450

    Article  Google Scholar 

  42. Needleman A, Asaro RJ, Lemonds J, Peirce D (1985) Finite element analysis of crystalline solids. Comput Methods Appl Mech Eng 52:689–708

    Article  Google Scholar 

  43. Zikry MA, Kao M (1996) Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J Mech Phys Solids 44:1765–1798

    Article  Google Scholar 

  44. Ortiz M, Suresh S (1993) Statistical properties of residual stresses and intergranular fracture in ceramic materials. J Appl Mech 60:77–84

    Article  Google Scholar 

  45. Espinos HD, Zavattieri PD (2003a) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I theory and numerical implementation. Mech Mater 35:333–364

    Article  Google Scholar 

  46. Pathak S, Michler J, Wasmer K, Kalidindi SR (2012) Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J Mater Sci 47:815–823. doi:10.1007/s10853-011-5859-z

    Article  Google Scholar 

  47. Grinfeld M (1991) Thermodynamic methods in the theory of heterogeneous systems. Longman Scientific and Technical, Sussex

    Google Scholar 

  48. Abeyaratne R, Knowles JK (1990) On the driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38:345–360

    Article  Google Scholar 

  49. Abeyaratne R, Knowles JK (1991) Kinetic relations and the propagation of phase boundaries in solids. Arch Ration Mech Anal 114:119–154

    Article  Google Scholar 

  50. Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289

    Article  Google Scholar 

  51. Mughrabi H (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall 31:1367–1379

    Article  Google Scholar 

  52. Rezvanian O, Zikry MA, Rajendran AM (2007) Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling. Proc R Soc Lond A 463:2833–2853

    Article  Google Scholar 

  53. Clayton JD, McDowell DL, Bammann DJ (2006) Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int J Plast 22:210–256

    Article  Google Scholar 

  54. Clayton JD, Bammann DJ, McDowell DL (2004a) Anholonomic configuration spaces and metric tensors in finite strain elastoplasticity. Int J Non Linear Mech 39:1039–1049

    Article  Google Scholar 

  55. Clayton JD (2012a) On anholonomic deformation, geometry, and differentiation. Math Mech Solids 17:702–735

    Article  Google Scholar 

  56. Clayton JD (2014c) Differential geometry and kinematics of continua. World Scientific, Singapore

    Book  Google Scholar 

  57. Steinmann P (2015) Geometrical foundations of continuum mechanics. Springer, Berlin

    Book  Google Scholar 

  58. Regueiro RA, Bammann DJ, Marin EB, Garikipati K (2002) A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J Eng Mater Technol 124:380–387

    Article  Google Scholar 

  59. Clayton JD, McDowell DL, Bammann DJ (2004b) A multiscale gradient theory for elastoviscoplasticity of single crystals. Int J Eng Sci 42:427–457

    Article  Google Scholar 

  60. Admal NC, Po G, Marian J (2017) Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations. Mater Theory 1:1–16

    Article  Google Scholar 

  61. Li JCM (1972) Disclination model of high angle grain boundaries. Surf Sci 31:12–26

    Article  Google Scholar 

  62. Clayton JD, Bammann DJ, McDowell DL (2005) A geometric framework for the kinematics of crystals with defects. Philos Mag 85:3983–4010

    Article  Google Scholar 

  63. Steinmann P (2013) On the roots of continuum mechanics in differential geometry. In: Altenbach H, Eremeyev VA (eds) Generalized continua-from the theory to engineering applications. Springer, Udine, pp 1–64

    Google Scholar 

  64. Clayton JD (2015c) Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions. Z Angew Math Mech ZAMM) 95:476–510

    Article  Google Scholar 

  65. Upadhyay M, Capolungo L, Taupin V, Fressengeas C (2011) Grain boundary and triple junction energies in crystalline media: a disclination based approach. Int J Solids Struct 48:3176–3193

    Article  Google Scholar 

  66. Sun XY, Cordier P, Taupin V, Fressengeas C, Jahn S (2016) Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations. Philo Mag 96:1757–1772

    Article  Google Scholar 

  67. Gerken JM, Dawson PR (2008) A crystal plasticity model that incorporates stresses and strains due to slip gradients. J Mech Phys Solids 56:1651–1672

    Article  Google Scholar 

  68. Luscher DJ, Mayeur JR, Mourad HM, Hunter A, Kenamond MA (2016) Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions. Int J Plast 76:111–129

    Article  Google Scholar 

  69. Clayton JD, Hartley CS, McDowell DL (2014) The missing term in the decomposition of finite deformation. Int J Plast 52:51–76

    Article  Google Scholar 

  70. Clayton JD (2014d) An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q J Mech Appl Math 67:127–158

    Article  Google Scholar 

  71. Clayton JD, Bammann DJ (2009) Finite deformations and internal forces in elastic–plastic crystals: interpretations from nonlinear elasticity and anharmonic lattice statics. J Eng Mater Technol 131:041201

    Article  Google Scholar 

  72. Toupin RA, Rivlin RS (1960) Dimensional changes in crystals caused by dislocations. J Math Phys 1:8–15

    Article  Google Scholar 

  73. Clayton JD (2009b) A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc R Soc Lond A 465:307–334

    Article  Google Scholar 

  74. Clayton JD (2009c) A non-linear model for elastic dielectric crystals with mobile vacancies. Int J Non Linear Mech 44:675–688

    Article  Google Scholar 

  75. Abdollahi A, Arias I (2012) Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals. Int J Fract 174:3–15

    Article  Google Scholar 

  76. Fan D, Chen L-Q (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45:611–622

    Article  Google Scholar 

  77. Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095

    Article  Google Scholar 

  78. Abrivard G, Busso EP, Forest S, Appolaire B (2012a) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. Philos Mag 92:3618–3642

    Article  Google Scholar 

  79. Abrivard G, Busso EP, Forest B, Appolaire S (2012b) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: application to recrystallisation. Philos Mag 92:3643–3664

    Article  Google Scholar 

  80. James RD (1981) Finite deformation by mechanical twinning. Arch Ration Mech Anal 77:143–176

    Article  Google Scholar 

  81. Zanzotto G (1996) The Cauchy–Born hypothesis, nonlinear elasticity and mechanical twinning in crystals. Acta Crystallogr A 52:839–849

    Article  Google Scholar 

  82. Bilby BA, Crocker AG (1965) The theory of the crystallography of deformation twinning. Proc R Soc Lond A 288:240–255

    Article  Google Scholar 

  83. Barton NR, Winter NW, Reaugh JE (2009) Defect evolution and pore collapse in crystalline energetic materials. Modelling Simul Mater Sci Eng 17:035003

    Article  Google Scholar 

  84. Clayton JD, Becker R (2012) Elastic–plastic behavior of cyclotrimethylene trinitramine single crystals under spherical indentation: modeling and simulation. J Appl Phys 111:063512

    Article  Google Scholar 

  85. Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, New York

    Google Scholar 

  86. Hou TY, Rosakis P, LeFloch P (1999) A level-set approach to the computation of twinning and phase-transition dynamics. J Comput Phys 150:302–331

    Article  Google Scholar 

  87. Chin GY, Hosford WF, Mendorf DR (1969) Accommodation of constrained deformation in FCC metals by slip and twinning. Proc R Soc Lond A 309:433–456

    Article  Google Scholar 

  88. Van Houtte P (1978) Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall 26:591–604

    Article  Google Scholar 

  89. Kalidindi SR (1998) Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids 46:267–290

    Article  Google Scholar 

  90. Staroselsky A, Anand L (1998) Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning. J Mech Phys Solids 46:671–696

    Article  Google Scholar 

  91. Clayton JD (2010a) Modeling finite deformations in trigonal ceramic crystals with lattice defects. Int J Plast 26:1357–1386

    Article  Google Scholar 

  92. Mirkhani H, Joshi SP (2014) Mechanism-based crystal plasticity modeling of twin boundary migration in nanotwinned face-centered-cubic metals. J Mech Phys Solids 68:107–133

    Article  Google Scholar 

  93. Clayton JD, Knap J (2011a) A phase field model of deformation twinning: nonlinear theory and numerical simulations. Physica D 240:841–858

    Article  Google Scholar 

  94. Hu SY, Henager CH, Chen L-Q (2010) Simulations of stress-induced twinning and de-twinning: a phase field model. Acta Mater 58:6554–6564

    Article  Google Scholar 

  95. Heo TW, Wang Y, Bhattacharya S, Sun X, Hu S, Chen L-Q (2011) A phase-field model for deformation twinning. Philos Mag Lett 91:110–121

    Article  Google Scholar 

  96. Bhattacharya K (1993) Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin Mech Thermodyn 5:205–242

    Article  Google Scholar 

  97. Clayton JD, Knap J (2011b) Phase field modeling of twinning in indentation of transparent single crystals. Modelling Simul Mater Sci Eng 19:085005

    Article  Google Scholar 

  98. Clayton JD, Knap J (2013) Phase field analysis of fracture induced twinning in single crystals. Acta Mater 61:5341–5353

    Article  Google Scholar 

  99. Hildebrand FE, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92:4250–4290

    Article  Google Scholar 

  100. Clayton JD, Knap J (2015b) Nonlinear phase field theory for fracture and twinning with analysis of simple shear. Philos Mag 95:2661–2696

    Article  Google Scholar 

  101. Kondo R, Tadano Y, Shizawa K (2014) A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals. Comput Mater Sci 95:672–683

    Article  Google Scholar 

  102. Li X, Wei Y, Lu L, Lu K, Gao H (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464:877–880

    Article  Google Scholar 

  103. Yang L, Dayal K (2010) Formulation of phase-field energies for microstructure in complex crystal structures. Appl Phys Lett 96:081916

    Article  Google Scholar 

  104. Agrawal V, Dayal K (2015a) A dynamic phase-field model for structural transformations and twinning: regularized interfaces with transparent prescription of complex kinetics and nucleation. part I: formulation and one-dimensional characterization. J Mech Phys Solids 85:270–290

    Article  Google Scholar 

  105. Agrawal V, Dayal K (2015b) A dynamic phase-field model for structural transformations and twinning: regularized interfaces with transparent prescription of complex kinetics and nucleation. part II: two-dimensional characterization and boundary kinetics. J Mech Phys Solids 85:291–307

    Article  Google Scholar 

  106. Schultz MC, Jensen RA, Bradt RC (1994) Single crystal cleavage of brittle materials. Int J Fract 65:291–312

    Article  Google Scholar 

  107. Clayton JD (2008) A model for deformation and fragmentation in crushable brittle solids. Int J Impact Eng 35:269–289

    Article  Google Scholar 

  108. Antoun T (2003) Spall fracture. Springer, New York

    Google Scholar 

  109. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  110. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  Google Scholar 

  111. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531

    Article  Google Scholar 

  112. Xu X-P, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Modelling Simul Mater Sci Eng 1:111–132

    Article  Google Scholar 

  113. Clayton JD, McDowell DL (2004) Homogenized finite elastoplasticity and damage: theory and computations. Mech Mater 36:799–824

    Article  Google Scholar 

  114. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  115. Clayton JD (2005a) Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J Mech Phys Solids 53:261–301

    Article  Google Scholar 

  116. Clayton JD (2005b) Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int J Solids Struct 42:4613–4640

    Article  Google Scholar 

  117. Vogler TJ, Clayton JD (2008) Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J Mech Phys Solids 56:297–335

    Article  Google Scholar 

  118. Espinosa HD, Zavattieri PD (2003b) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: numerical examples. Mech Mater 35:365–394

    Article  Google Scholar 

  119. Kraft RH, Molinari JF (2008) A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Mater 56:4739–4749

    Article  Google Scholar 

  120. Foulk JW, Vogler TJ (2010) A grain-scale study of spall in brittle materials. Int J Fract 163:225–242

    Article  Google Scholar 

  121. Krajcinovic D (1996) Damage mechanics. Elsevier, Amsterdam

    Google Scholar 

  122. Voyiadjis GZ, Kattan PI (2005) Damage mechanics. CRC Press, Boca Raton

    Book  Google Scholar 

  123. Kachanov LM (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31

    Google Scholar 

  124. Bammann DJ, Solanki KN (2010) On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. Int J Plast 26:775–793

    Article  Google Scholar 

  125. Del Piero G, Owen DR (1993) Structured deformations of continua. Arch Ration Mech Anal 124:99–155

    Article  Google Scholar 

  126. Clayton JD (2006) Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals. Theor Appl Fract Mech 45:163–185

    Article  Google Scholar 

  127. Clayton JD, McDowell DL (2003b) Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int Solids Struct 40:5669–5688

    Article  Google Scholar 

  128. Clayton JD (2010b) Deformation, fracture, and fragmentation in brittle geologic solids. Int J Fract 163:151–172

    Article  Google Scholar 

  129. Bammann DJ, Aifantis EC (1989) A damage model for ductile metals. Nucl Eng Des 116:355–362

    Article  Google Scholar 

  130. Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49:1311–1325

    Article  Google Scholar 

  131. ** YM, Wang YU, Khachaturyan AG (2001) Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids. Appl Phys Lett 79:3071–3073

    Article  Google Scholar 

  132. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501

    Article  Google Scholar 

  133. Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55:2513–2537

    Article  Google Scholar 

  134. Clayton JD, Knap J (2014) A geometrically nonlinear phase field theory of brittle fracture. Int J Fract 189:139–148

    Article  Google Scholar 

  135. Clayton JD, Knap J (2016) Phase field modeling of coupled fracture and twinning in single crystals and polycrystals. Comput Methods Appl Mech Eng 312:447–467

    Article  Google Scholar 

  136. Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95

    Article  Google Scholar 

  137. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  Google Scholar 

  138. Agrawal V, Dayal K (2017) Dependence of equilibrium Griffith surface energy on crack speed in phase-field models for fracture coupled to elastodynamics. Int J Fract 207:243–249

    Article  Google Scholar 

  139. McAuliffe C, Waisman H (2015) A unified model for metal failure capturing shear banding and fracture. Int J Plast 65:131–151

    Article  Google Scholar 

  140. Wright TW, Ockendon H (1992) A model for fully formed shear bands. J Mech Phys Solids 40:1217–1226

    Article  Google Scholar 

  141. Wright TW, Walter JW (1996) The asymptotic structure of an adiabatic shear band in antiplane motion. J Mech Phys Solids 44:77–97

    Article  Google Scholar 

  142. Clayton JD (2017a) Finsler geometry of nonlinear elastic solids with internal structure. J Geom Phys 112:118–146

    Article  Google Scholar 

  143. Clayton JD (2014e) Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic. AIMS Mater Sci 1:143–158

    Article  Google Scholar 

  144. Clayton JD (2017b) Generalized finsler geometric continuum physics with applications in fracture and phase transformations. Z Angew Math Phys (ZAMP) 68:9

    Article  Google Scholar 

  145. Clayton JD (2012b) Towards a nonlinear elastic representation of finite compression and instability of boron carbide ceramic. Philos Mag 92:2860–2893

    Article  Google Scholar 

  146. Clayton JD (2016a) Finsler-geometric continuum mechanics. Technical Report ARL-TR-7694, US Army Research Laboratory, Aberdeen Proving Ground MD

  147. Kenway PR (1993) Calculated stacking-fault energies in \(\alpha \)-Al\(_2\)O\(_3\). Philos Mag B 68:171–183

    Article  Google Scholar 

  148. Clayton JD (2010c) Modeling nonlinear electromechanical behavior of shocked silicon carbide. J Appl Phys 107:013520

    Article  Google Scholar 

  149. Clayton JD (2011b) A nonlinear thermomechanical model of spinel ceramics applied to aluminum oxynitride (AlON). J Appl Mech 78:011013

    Article  Google Scholar 

  150. Clayton JD (2016b) Finsler-geometric continuum mechanics and the micromechanics of fracture in crystals. J Micromech Mol Phys 1:164003

    Article  Google Scholar 

  151. Clayton JD (2017) Finsler-geometric continuum dynamics and shock compression. Int J Fract. doi:10.1007/s10704-017-0211-5

    Google Scholar 

  152. Saczuk J (1996) Finslerian foundations of solid mechanics. Polskiej Akademii Nauk, Gdansk

    Google Scholar 

  153. Stumpf H, Saczuk J (2000) A generalized model of oriented continuum with defects. Z Angew Math Mech (ZAMM) 80:147–169

    Article  Google Scholar 

  154. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    Google Scholar 

  155. Steinbach I (2009) Phase-field models in materials science. Modelling Simul Mater Sci Eng 17:073001

    Article  Google Scholar 

  156. Chen L-Q (2002) Phase-field models for microstructure evolution. Ann Rev Mater Res 32:113–140

    Article  Google Scholar 

Download references

Acknowledgements

Much of this paper was written while the author served as a visiting research fellow at Columbia University in the Department of Civil Engineering and Engineering Mechanics of the Fu Foundation School of Engineering and Applied Science in New York, NY, USA. The author acknowledges the courtesy of Dr. WaiChing (Steve) Sun for hosting his sabbatical visit at Columbia University in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Additional information

Invited review article for Special Issue of Journal of Materials Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, J.D. Mesoscale models of interface mechanics in crystalline solids: a review. J Mater Sci 53, 5515–5545 (2018). https://doi.org/10.1007/s10853-017-1596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1596-2

Navigation