Log in

Highly bendable, transparent, and conductive AgNWs-PET films fabricated via transfer-printing and second pressing technique

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly bendable, transparent, and conductive films composed of silver nanowires (AgNWs) network and polyethylene terephthalate (PET) substrate were prepared by a transfer-printing and second pressing technique using different dimensional AgNWs. The performance of the films as a function of optical and bending performances with low sheet resistance is enhanced, by controlling the diameter and length of AgNWs, area density, and the mechanical press condition. With the optimized mean diameter (D) ~40 nm and length (L) ~15 μm, the as-prepared AgNWs-PET film possesses a sheet resistance of 11.5 Ω/sq, transmittance (T 550) of 93.4 %, and haze of 1.23 %. The AgNWs-PET film with the second press treatment at 10 MPa for 20 s shows a very excellent bending performance, with less than 8 % change of the sheet resistance after 46,000 bending cycles without any additional conductive polymer. This highly bendable, transparent, and conductive film is suitable for emerging technologies such as flexible display, electrical skins, and bendable solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ham J, Lee JL (2014) ITO breakers: highly transparent conducting polymer/metal/dielectric (P/M/D) films for organic solar cells. Adv Energy Mater 4:11–15

    Google Scholar 

  2. Yim JH, Joe S, Pang C, Lee KM, Jeong H, Park JY, Yeong AH, Mello JC, Lee S (2014) Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano 8(3):2857–2863

    Article  Google Scholar 

  3. Ham J, Kim S, Jung GH, Dong WJ, Lee JL (2013) Design of broad band transparent electrodes for flexible organic solar cells. J Mater Chem A 1:3076–3082

    Article  Google Scholar 

  4. Liu BT, Kuo HL (2013) Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon 63:390–396

    Article  Google Scholar 

  5. Liu BT, Hsu CH (2011) Anti-scratch and transparency properties of transparent conductive carbon nanotube films improved by incorporating polyethoxysiloxane. J Colloid Interface Sci 359(2):423–427

    Article  Google Scholar 

  6. Tien WC, Chu AK (2014) ITO DBR electrodes fabricated on PET substrate for organic electronics. Opt Express 22:3944–3949

    Article  Google Scholar 

  7. Liu BT, Hsu CH, Wang WH (2012) A comparative study on preparation of conductive and transparent carbon nanotube thin films. J Taiwan Inst Chem Eng 43(1):147–152

    Article  Google Scholar 

  8. Tien HW, Huang YL, Yang SY, Hsiao ST, Wang JY, Ma CCM (2011) Graphene nanosheets deposited on polyurethane films by self-assembly for preparing transparent, conductive films. J Mater Chem 21(38):14876–14883

    Article  Google Scholar 

  9. Yang L, Kong J, Yee WA, Liu W, Phua SL, Toh CL et al (2012) Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites. Nanoscale 4(16):4968–4971

    Article  Google Scholar 

  10. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  Google Scholar 

  11. Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, Zhou CW (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6(9):1880–1886

    Article  Google Scholar 

  12. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29

    Article  Google Scholar 

  13. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163

    Article  Google Scholar 

  14. Coskun S, Ates ES, Unalan HE (2013) Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 24:125202

    Article  Google Scholar 

  15. Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Very long Ag nanowire synthesis and its application for a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4:6408–6414

    Article  Google Scholar 

  16. Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, Fearing RS, Javey A (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821–826

    Article  Google Scholar 

  17. Lipomi DJ, Tee BCK, Vosgueritchian M, Bao Z (2011) Stretchable organic solar cells. Adv Mater 23:1771–1775

    Article  Google Scholar 

  18. Takehiro T, Masaya N, Makoto K, **ting J, Thi TN, Yoshio A, Katsuaki S (2011) Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 4(12):1215–1222

    Article  Google Scholar 

  19. Khanarian G, Joo J, Liu XQ, Eastman P, Werner D, Connell KO, Trefonas P (2013) The optical and electrical properties of silver nanowire mesh films. J Appl Phys 114:024302

    Article  Google Scholar 

  20. Liu CH, Yu X (2011) Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett 6:75

    Article  Google Scholar 

  21. Lee J, Lee P, Lee HB, Hong SK, Lee I, Yeo J, Lee SS, Kim TS, Lee DJ, Ko SH (2013) Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch panel application. Adv Funct Mater 23:4171–4176

    Article  Google Scholar 

  22. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, BlauWJ BJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7):1767–1774

    Article  Google Scholar 

  23. Yu ZB, Zhang QW, Li L, Chen Q, Niu XF, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23(5):664–668

    Article  Google Scholar 

  24. Li X, Gittleson F, Carmo M, Sekol RC, Taylor AD (2012) Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion. ACS Nano 6(2):1347–1356

    Article  Google Scholar 

  25. Kim T, Canlier A, Kim GH, Choi J, Park M, Han SM (2013) Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl Mater Interfaces 5:788–794

    Article  Google Scholar 

  26. Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23(26):2905–2910

    Article  Google Scholar 

  27. Li M, **g MX, Wang Z, Li B, Shen XQ (2015) Controllable growth of superfine silver nanowires by self-seeding polyol process. J Nanosci Nanotechnol 15:6088–6093

    Article  Google Scholar 

  28. Kiran Kumar ABV, Bae CW, Piao LH, Kim SH (2013) Silver nanowire based flexible electrodes with improved properties: high conductivity, transparency, adhesion and low haze. Mater Res Bull 48:2944–2949

    Article  Google Scholar 

  29. Lee HS, Kim YW, Kim JE, Yoon SW, Kim TY, Noh JS, Suh SK (2015) Synthesis of dimension-controlled silver nanowires for highly conductive and transparent nanowire films. Acta Mater 83:84–90

    Article  Google Scholar 

  30. Madaria AR, Kumar A, Ishikawa FN, Zhou CW (2010) Uniform, highly conductive, and patterned transparent films of a percolating silver nanowires network on rigid and flexible substrates using a dry transfer technique. Nano Res 3:564–573

    Article  Google Scholar 

  31. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3:1767–1774

    Article  Google Scholar 

  32. **g MX, Han C, Li M, Shen XQ (2014) High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Res Lett 9:588

    Article  Google Scholar 

  33. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668

    Article  Google Scholar 

  34. Zhang YY, Wang LC, Li X, Yi XY, Zhang N, Li J, Zhu HW, Wang GH (2012) Annealed InGaN green light-emitting diodes with graphene transparent conductive electrodes. J Appl Phys 111:114501

    Article  Google Scholar 

  35. Hwang JO, Park JS, Choi DS, Kim JY, Lee SH, Lee KE, Kim YH, Song MH, Yoo S, Kim SO (2012) Work function-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano 6:159–167

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51274106, 51474113, 51474037), the Science and Technology Support Program of Jiangsu Province of China (Grant Nos. BE2012143, BE2013071, BE2014850), the Natural Science Research Program of Jiangsu Province Higher Education of China (Grant Nos. 12KJA430001, 14KJB430010), and the Jiangsu Province’s Postgraduate Cultivation and Innovation Project of China (Grant CXZZ13-0662, KYLX-1030, SJZZ-0132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang-qian Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**g, Mx., Li, M., Chen, Cy. et al. Highly bendable, transparent, and conductive AgNWs-PET films fabricated via transfer-printing and second pressing technique. J Mater Sci 50, 6437–6443 (2015). https://doi.org/10.1007/s10853-015-9198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9198-3

Keywords

Navigation