Log in

Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A series of azobenzene-bridged dipillar[5]arenes were conveniently synthesized by coupling reaction of aminoalkyl-functionalized pillar[5]arenes with azobenzene-4,4’-dioxyacetic acid or azobenzene-4,4’-dioxybutanoic acid in dry chloroform under the combinatorial catalysis of HOBt/EDCl. 1H NMR, 2D NOESY spectra and single crystal structure clearly indicated that the unique bis-[1]rotaxanes could be formed by threading two diaminoalkylene units into the two cavities of pillar[5]arenes depending on the length of the diaminoalkylene chains. Under light irradiation at 365 nm, the trans-azobenzene unit transferred to cis-configuration, while the basic bis-[1]rotaxane structure was kept unchanged.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fahrenbach, A.C., Bruns, C.J., Cao, D., Stoddart, J.F.: Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules. Acc. Chem. Res. 45, 1581–1592 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Xue, M., Yang, Y., Chi, X.D., Yan, X.Z., Huang, F.H.: Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev. 115, 7398–7501 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. Spence, G.T., Beer, P.D.: Expanding the scope of the anion templated synthesis of interlocked structures. Acc. Chem. Res. 46, 571–586 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. Mena-Hernando, S., Pérez, E.M.: Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 48, 5016–5032 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Li, B., He, T., Fan, Y.Q., Yuan, X.C., Qiu, H.Y., Yin, S.C.: Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem. Commun. 55, 8036–8059 (2019)

    Article  CAS  Google Scholar 

  6. Lewandowski, B., Bo, G.D., Ward, J.W., Papmeyer, M., Kuschel, S., Aldegunde, M.J., Gramlich, P.M.E., Heckmann, D., Goldup, S.: Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Li, H., Li, X., Agren, H., Qu, D.H.: Two switchable star-shaped [1](n)rotaxanes with different multibranched cores. Org. Lett. 16, 4940–4943 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Li, S.H., Zhang, H.Y., Xu, X.F., Liu, Y.: Mechanically selflocked chiral gemini-catenanes. Nat. Commun. 6, 7590–7596 (2015)

    Article  PubMed  Google Scholar 

  9. Sun, Y., Chen, C.Y., Liu, J.B., Stang, P.J.: Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem. Soc. Rev. 49, 3889–3919 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wenz, G., Han, B.H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fahrenbach, A.C., Bruns, C.J., Li, H., Trabolsi, A., Coskun, A., Stoddart, J.F.: Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules. Acc. Chem. Res. 47, 482–493 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X.Q., Li, W.J., Wang, W., Yang, H.B.: Heterorotaxanes. Chem. Commun. 54, 13303–13318 (2018)

    Article  CAS  Google Scholar 

  14. Ma, X., Tian, H.: Bright functional rotaxanes. Chem. Soc. Rev. 39, 70–80 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. Lewis, J.E.M., Galli, M., Goldup, S.M.: Properties and emerging applications of mechanically interlocked ligands. Chem. Commun. 53, 298–312 (2017)

    Article  CAS  Google Scholar 

  16. Roberts, D.A., Pilgrim, B.S., Nitschke, J.R.: Covalent post-assembly modification in metallosupramolecular chemistry. Chem. Soc. Rev. 47, 626–644 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, H.Y., Zong, Q.S., Han, Y., Chen, C.F.: Recent advances in higher order rotaxane architectures. Chem. Commun. 56, 9916–9936 (2020)

    Article  CAS  Google Scholar 

  18. Han, X., Liu, G.T., Liu, S.H., Yin, J.: Synthesis of rotaxanes and catenanes using an imine clip** reaction. Org. Biomol. Chem. 14, 10331–10351 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Lewis, J.E.M., Beer, P.D., Loeb, S.J., Goldup, S.M.: Metal ions in the synthesis of interlocked molecules and materials. Chem. Soc. Rev. 46, 2577–2591 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. Webber, M.J., Langer, R.: Drug delivery by supramolecular design. Chem. Soc. Rev. 46, 6600–6620 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. Baroncini, M., Silvi, S., Credi, A.: Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. Xue, Z., Mayer, M.F.: Actuator prototype: capture and release of a self-entangled [1]rotaxane. J. Am. Chem. Soc. 132, 3274–3276 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Waelés, P., Clavel, C., Fournel-Marotte, K., Coutrot, F.: Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8. Chem. Sci. 6, 4828–4836 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schröder, H.V., Wollschläger, J.M., Schalley, C.A.: Redox-controlled self-inclusion of a lasso-type pseudo[1]rotaxane. Chem. Commun. 53, 9218–9221 (2017)

    Article  Google Scholar 

  25. **a, D.Y., Wang, P., Ji, X.F., Khashab, N.M., Sessler, J.L., Huang, F.H.: Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 120, 6070–6123 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. Ke, C., Strutt, N.L., Li, H., Hou, X., Hartlieb, K.J., McGonigal, P.R., Ma, Z., Lehl, J., Stern, C.L., Cheng, C., Zhu, Z., Vermeulen, N.A., Meade, T.J., Botros, Y.Y., Stoddart, J.F.: Pillar[5]arene as a co-factor in templating rotaxane formation. J. Am. Chem. Soc. 135, 17019–17030 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Pan, S., Ni, M., Mu, B., Li, Q., Hu, X.Y., Lin, C., Chen, D., Wang, L.Y.: Well-defined pillararene-based azobenzene liquid crystalline photoresponsive materials and their thin films with photomodulated surfaces. Adv. Funct. Mater. 25, 3571–3580 (2015)

    Article  CAS  Google Scholar 

  28. Zhang, H., Liu, Z., Zhao, Y.: Pillararene-based self-assembled amphiphiles. Chem. Soc. Rev. 47, 5491–5528 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. Li, H., Yang, Y., Xu, F.F., Liang, T.X., Wen, H.R., Tian, W.: Pillararene-based supramolecular polymers. Chem. Commun. 55, 271–285 (2019)

    Article  CAS  Google Scholar 

  30. Liu, Z.N., Zhang, H.C., Han, J.: Crown ether-pillararene hybrid macrocyclic systems. Org. Biomol. Chem. 19, 3287–3302 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y., Pei, Z.C., Feng, W.W., Pei, Y.X.: Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J. Mater. Chem. B 7, 7656–7675 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Y.Y., Jiang, X.M., Gong, G.F., Yao, H., Zhang, Y.M., Wei, T.B., Lin, Q.: Pillararene-based AIEgens: research progress and appealing applications. Chem. Commun. 57, 284–301 (2021)

    Article  CAS  Google Scholar 

  33. Xue, M., Yang, Y., Chi, X.D., Zhang, Z.B., Huang, F.H.: Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Z.C., Nalluri, S.K.M., Stoddart, J.F.: Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Y.L., **, C.H., Li, C.J.: Efficient complexation between pillar[5]arenes and neutral guests: from host-guest chemistry to functional materials. Chem. Commun. 52, 9858–9872 (2016)

    Article  CAS  Google Scholar 

  36. Sun, S.Y., Geng, M., Huang, L., Chen, Y.M., Cen, M.P., Lu, D., Wang, A.W., Wang, Y., Shi, Y.J., Yao, Y.: A new amphiphilic pillar[5]arene: synthesis and controllable self-assembly in water and application in white-light-emitting systems. Chem. Commun. 54, 13006–13009 (2018)

    Article  CAS  Google Scholar 

  37. Sun, Y., Fu, W.X., Chen, C.Y., Wang, J., Yao, Y.: Water-soluble pillar[5]arene induced the morphology transformation of self-assembled nanostructures and had further application in paraquat detection. Chem. Commun. 53, 3725–3728 (2017)

    Article  CAS  Google Scholar 

  38. Li, B., Meng, Z., Li, Q.Q., Huang, X.Y., Kang, Z.Y., Dong, H.J., Chen, J.Y., Sun, J., Dong, Y.S., Li, J., Jia, X.S., Sessler, J.L., Meng, Q.B., Li, C.J.: A pH responsive complexation-based drug delivery system for oxaliplatin. Chem. Sci. 8, 4458–4464 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao, Y., Wei, X.J., Cai, Y., Kong, X.Q., Chen, J., Wu, J.M., Shi, Y.J.: Hybrid supramolecular materials constructed from pillar[5]arene based host-guest interactions with photo and redox tunable properties. J. Colloid Interf. Sci. 525, 48–53 (2018)

    Article  CAS  Google Scholar 

  40. Sun, S.Y., Lu, D., Huang, Q., Liu, Q., Yao, Y., Shi, Y.J.: Reversible surface activity and self-assembly behavior and transformation of amphiphilic ionic liquids in water induced by a pillar[5]arene-based host-guest interaction. J. Colloid Interf. Sci. 533, 42–46 (2019)

    Article  CAS  Google Scholar 

  41. Ogoshi, T., Demachi, K., Kitajima, K., Yamagishi, T.: Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. Chem. Commun. 47, 7164–7166 (2011)

    Article  CAS  Google Scholar 

  42. Chen, Y., Cao, D., Wang, L., He, M.Q., Zhou, L.X., Schollmeyer, D., Meier, H.: Monoester copillar[5]arenes: synthesis, unusual self-inclusion behavior, and molecular recognition. Chem. Eur. J. 19, 7064–7070 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. **a, B.Y., Xue, M.: Design and efficient synthesis of a pillar[5]arene-based [1]rotaxane. Chem. Commun. 50, 1021–1023 (2014)

    Article  CAS  Google Scholar 

  44. Ni, M.F., Hu, X.Y., Jiang, J.L., Wang, L.Y.: The self-complexation of mono-urea-functionalized pillar[5]arenes with abnormal urea behaviors. Chem. Commun. 50, 1317–1319 (2014)

    Article  CAS  Google Scholar 

  45. Guan, Y.F., Liu, P.Y., Deng, C., Ni, M.F., **ong, S.H., Lin, C., Hu, X.Y., Ma, J., Wang, L.Y.: Dynamic self-inclusion behavior of pillar[5]arene-based pseudo[1]rotaxanes. Org. Biomol. Chem. 12, 1079–1089 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. Wu, X., Ni, M.F., **a, W., Hu, X.Y., Wang, L.Y.: A novel dynamic pseudo[1]rotaxane based on a mono-biotin-functionalized pillar[5]arene. Org. Chem. Front. 2, 1013–1017 (2015)

    Article  CAS  Google Scholar 

  47. Wu, X., Gao, L., Sun, J.Z., Hu, X.Y., Wang, L.Y.: Stable pillar[5]arene-based pseudo[1]rotaxanes formed in polar solution. Chin. Chem. Lett. 27, 1655–1660 (2016)

    Article  CAS  Google Scholar 

  48. Sun, C.L., Xu, J.F., Chen, Y.Z., Niu, L.Y., Wu, L.Z., Tung, C.H., Yang, Y.Q.: Monofunctionalized pillar[5]arene-based stable [1]pseudorotaxane. Chin. Chem. Lett. 26, 843–846 (2015)

    Article  CAS  Google Scholar 

  49. Cheng, M., Wang, Q., Cao, Y.H., Pan, Y., Yang, Z.J., Jiang, J.L., Wang, L.Y.: Two pillar[5]arene-based mechanically selflocked molecules (MSMs): planar chirality in crystals and conformer inversion in solutions. Tetrahedron Lett. 57, 4133–4137 (2016)

    Article  CAS  Google Scholar 

  50. Du, X.S., Wang, C.Y., Jia, Q., Deng, R., Tian, H.S., Zhang, H.Y., Meguellati, K., Yang, Y.W.: Pillar[5]arene-based [1]rotaxane: high-yield synthesis, characterization and application in Knoevenagel reaction. Chem. Commun. 53, 5326–5329 (2017)

    Article  CAS  Google Scholar 

  51. Tian, H.S., Wang, C.Y., Lin, P.H., Meguellati, K.: Synthesis and characterization of a new pillar[5]arene-based [1]rotaxane. Tetrahedron Lett. 59, 3416–3422 (2018)

    Article  CAS  Google Scholar 

  52. **ao, T.X., Zhou, L., Xu, L.X., Zhong, W.W., Zhao, W., Sun, X.Q., Elmes, R.B.P.: Dynamic materials fabricated from water soluble pillar[n]arenes bearing triethylene oxide groups. Chin. Chem. Lett. 30, 271–276 (2019)

    Article  CAS  Google Scholar 

  53. Wang, M.J., Du, X.S., Tian, H.S., Jia, Q., Deng, R., Cui, Y.H., Wang, C.Y., Meguellati, K.: Design and synthesis of self-included pillar[5]arene-based bis-[1]rotaxanes. Chin. Chem. Lett. 30, 345–348 (2019)

    Article  CAS  Google Scholar 

  54. Han, Y., Huo, G.F., Sun, J., **e, J., Yan, C.G., Zhao, Y., Wu, X., Lin, C., Wang, L.Y.: Formation of a series of stable pillar[5]arene-based pseudo[1]-rotaxanes and their [1]rotaxanes in the crystal state. Sci. Rep. 6, 28748 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huo, G.F., Han, Y., Sun, J., Yan, C.G.: Single crystal structures and complexing properties of some copillar[5]arene mono-schiff bases. J. Incl. Phenom. Macrocycl. Chem. 86, 231–240 (2016)

    Article  CAS  Google Scholar 

  56. Han, Y., Huo, G.F., Sun, J., Yan, C.G., Lu, Y.H., Lin, C., Wang, L.Y.: Axle length- and solvent-controlled construction of (pseudo)[1]rotaxanes from mono-thiourea-functionalized pillar[5]arene derivatives. Supramol. Chem. 29, 547–552 (2017)

    Article  CAS  Google Scholar 

  57. Jiang, S., Han, Y., Sun, J., Yan, C.G.: Construction and single crystal structures of pseudo[1]rotaxanes based on pillar[5]arene mono-pyridylimine derivatives. Tetrahedron 73, 5107–5114 (2017)

    Article  CAS  Google Scholar 

  58. Yin, C.B., Han, Y., Huo, G.F., Sun, J., Yan, C.G.: Synthesis, crystal structures and complexing ability of difunctionalized copillar[5]arene Schiff bases. Chin. Chem. Lett. 28, 431–436 (2017)

    Article  CAS  Google Scholar 

  59. Jiang, S., Han, Y., Cheng, M., Sun, J., Yan, C.G., Jiang, J.L., Wang, L.Y.: Self-locked dipillar[5]arene-based pseudo[1]rotaxanes and bispseudo[1]rotaxanes with different lengths of bridging chains. New J. Chem. 42, 7603–7606 (2018)

    Article  CAS  Google Scholar 

  60. Han, Y., Xu, L.M., Nie, C.Y., Jiang, S., Sun, J., Yan, C.G.: Synthesis of diamido-bridged bis-pillar[5]arenes and tris-pillar[5]arenes for construction of unique [1]rotaxanes and bis-[1]rotaxanes. Beilstein J. Org. Chem. 14, 1660–1667 (2014)

    Article  Google Scholar 

  61. Jiang, S., Han, Y., Zhao, L.L., Sun, J., Yan, C.G.: Synthesis of dithioureado-bridged bis-pillar[5]arenes and formation of unique bis-[1]rotaxanes. Supramol. Chem. 30, 642–647 (2018)

    Article  CAS  Google Scholar 

  62. Zhao, L.L., Han, Y., Yan, C.G.: Construction of [1]rotaxanes with pillar[5]arene as the wheel and terpyridine as the stopper. Chin. Chem. Lett. 31, 81–83 (2020)

    Article  CAS  Google Scholar 

  63. Ye, J.M., Zhang, R.M., Yang, W.J., Han, Y., Guo, H., **e, J., Yan, C.G., Yong, Y.: Pillar[5]arene-based [3]rotaxanes: convenient construction via multicomponent reaction and pH responsive self-assembly in water. Chin. Chem. Lett. 31, 1550–1553 (2020)

    Article  CAS  Google Scholar 

  64. Han, Y., Nie, C.Y., Jiang, S., Sun, J., Yan, C.G.: Synthesis and characterization of bis-[1]rotaxanes via salen-bridged bis-pillar[5]arenes. Chin. Chem. Lett. 31, 725–728 (2020)

    Article  CAS  Google Scholar 

  65. Chong, H., Nie, C.Y., Wang, L.H., Wang, S.C., Han, Y., Wang, Y., Wang, C.Y., Yan, C.G.: Construction and investigation of photo-switch property of azobenzene-bridged pillar[5]arene-based [3]rotaxanes. Chin. Chem. Lett. 32, 57–61 (2021)

    Article  CAS  Google Scholar 

  66. Ogoshi, T., Yamafuji, D., Aoki, T., Yamagishi, T.: Photoreversible transformation between seconds and hours time-scales: threading of pillar[5]arene onto the azobenzene-end of a viologen derivative. J. Org. Chem. 76, 9497–9503 (2011)

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, H.C., Strutt, N.L., Stoll, R.S., Li, H., Zhu, Z.X., Stoddart, J.F.: Dynamic clicked surfaces based on functionalised pillar[5]arene. Chem. Commun. 47, 11420–11422 (2011)

    Article  CAS  Google Scholar 

  68. Yu, G.C., Han, C.Y., Zhang, Z.B., Chen, J.Z., Yan, X.Z., Zheng, B., Liu, S.Y., Huang, F.H.: Pillar[6]arene-based photoresponsive host-guest complexation. J. Am. Chem. Soc. 134, 8711–8717 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Hu, X.Y., Jia, K.K., Cao, Y., Li, Y., Qin, S., Zhou, F., Lin, C., Zhang, D.M., Wang, L.Y.: Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]rene and different azobenzene derivatives for intracellular anticancer drug delivery. Chem. Eur. J. 21, 1208–1220 (2015)

    Article  CAS  PubMed  Google Scholar 

  70. Li, X., Li, Z., Yang, Y.W.: Tetraphenylethylene-interweaving conjugated macrocycle polymer materials as two-photon fluorescence sensors for metal ions and organic molecules. Adv. Mater. 30, 1800177 (2018)

    Article  Google Scholar 

  71. Ogoshi, T., Kotera, D., Fa, S.X., Nishida, S., Kakuta, T., Yamagishi, T., Brouwer, A.M.: A light-operated pillar[6]arene-based molecular shuttle. Chem. Commun. 56, 10871–10874 (2020)

    Article  CAS  Google Scholar 

  72. Zhang, R.M., Wang, C.W., Long, R.H., Chen, T.T., Yan, C.G., Yao, Y.: Pillar[5]arene based [1]rotaxane systems with redox-responsive host-guest property: design, synthesis and the key role of chain length. Front. Chem. 7, 508 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo, H., Yan, X., Lu, B., Wang, J., Yuan, X.L., Han, Y., Ding, Y., Wang, Y., Yan, C.G., Yao, Y.: Pillar[5]arene-based supramolecular assemblies with two-step sequential fluorescence enhancement for mitochondria-targeted cell imaging. J. Mater. Chem. C 8, 15622–15625 (2020)

    Article  CAS  Google Scholar 

  74. Zhang, R.M., Yan, X., Guo, H., Hu, L.P., Yan, C.G., Wang, Y., Yao, Y.: Supramolecular polymer networks based on pillar[5]arene: synthesis, characterization and application in the Fenton reaction. Chem. Commun. 56, 948–951 (2020)

    Article  CAS  Google Scholar 

  75. Guo, H., Ye, J.M., Zhang, Z.C., Wang, Y., Yuan, X.L., Ou, C.J., Ding, Y., Yan, C.G., Wang, J., Yao, Y.: Pillar[5]arene-based [2]rotaxane: synthesis, characterization, and application in a coupling reaction. Inorg. Chem. 59, 11915–11919 (2020)

    Article  CAS  PubMed  Google Scholar 

  76. Wang, Q., Bian, X.Y., Chen, X.L., Han, Y., Yan, C.G.: Mechanism and structure of the interaction of water-soluble pillar[5]arene and ibrutinib that enhances the anticancer activity of. J. Mol. Struct. 1210, 128004 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support by the National Natural Science Foundation of China (Grant No. 21871227) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Funding

This study was funded by National Natural Science Foundation of China (21871227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Guo Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Han, Y., Sun, J. et al. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J Incl Phenom Macrocycl Chem 102, 261–270 (2022). https://doi.org/10.1007/s10847-021-01115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01115-0

Keywords

Navigation