Log in

Synthesis and spectroscopic studies of chiral macrocyclic furanolabdanoids connected on the 16,17-positions by 1,2,3-triazole rings with methylene or oxamethylene units

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Derivatives of natural diterpenoid methyl lambertianate containing propargyloxy substituents in 16,17-positions were obtained. CuAAC reaction of methyl 17-propargyloxy-16-[(prop-2-yn-1-yloxy)methyl]labdadienoate with various diazides in the presence of Cu(II)/sodium ascorbate in methylene chloride/water reaction medium gave chiral macrocyclic compounds connected on the 16 and 17-positions by 1,2,3-triazole rings with methylene, ethyloxyethyl or ethylethoxyethyl units. The obtained macrocyclic structures showed high selectivity and affinity for Hg2+ ion by the 1,2,3-triazole rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marsault, E., Peterson, M.L.: Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem. 54, 1961–2004 (2011). doi:10.1021/jm1012374

    Article  CAS  Google Scholar 

  2. Giordanetto, F., Kihlberg, J.: Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J. Med. Chem. 57, 278–295 (2014). doi:10.1021/jm400887j

    Article  CAS  Google Scholar 

  3. Shan, C.-L., Yang, B., Sun, W.-Q., **ao, X., Tao, Z., Liu, J.-X.: 1,3-Propanediammonium and 1,12-dodecanediammonium encapsulated in the cavity of symmetrical α, α′, δ, δ′-tetramethyl-cucurbit[6]uril. Supramol. Chem. 27, 606–612 (2015). doi:10.1080/10610278.2015.1046456

    Article  CAS  Google Scholar 

  4. Nahar, L., Sarker, S.D.: Steroid dimers: chemistry and applications in drug delivery. Wiley, Chichester (2012)

    Book  Google Scholar 

  5. Hu, J., Li, R., Lu, J., Ju, Y.: Synthesis and anion recognition of a novel oleanolic acid-based cyclic dimer. Tetrahedron Lett. 52, 4211–4214 (2011). doi:10.1016/j.tetlet.2011.06.022

    Article  CAS  Google Scholar 

  6. Hu, J., Wu, J., Lu, J., Ju, Y.: A dual-responsive macrocycle based on glycyrrhetinic acid. Tetrahedron Lett. 53, 6705–6709 (2012). doi:10.1016/j.tetlet.2012.09.118

    Article  CAS  Google Scholar 

  7. Khaybullin, R.N., Strobykina, IYu., Dobrynin, A.B., Gubaydullin, A.T., Chestnova, R.V., Babaev, V.M., Kataev, V.E.: Synthesis and antituberculosis activity of novel unfolded and macrocyclic derivatives of ent-kaurane steviol. Bioorg. Med. Chem. Lett. 22(6909–6913), 2012 (2012). doi:10.1016/j.bmcl.09.023

    Google Scholar 

  8. Lohoelter, C., Brutschy, M., Lubczyk, D., Waldvogel, S.R.: Novel supramolecular affinity materials based on (−)-isosteviol as molecular templates. Beilstein J. Org. Chem. 9, 2821–2833 (2013). doi:10.3762/bjoc.9.317

    Article  Google Scholar 

  9. Wang, H., Tian, X., Yang, D., Pan, Y., Wu, Q., He, C.: Synthesis and enantiomeric recognition ability of 22-crown-6 ethers derived from rosin acid and BINOL. Tetrahedron Asymmetry 22, 381–386 (2011). doi:10.1016/j.tetasy.2011.02.014

    Article  CAS  Google Scholar 

  10. Wang, H., He, C., Pan, Y., Yao, C., Wu, Q., Deng, H.: Synthesis and amines enantiomeric recognition ability of binaphthyl-appended 22-crown-6 ether derived from rosin acid. J. Incl. Phenom. Macrocycl. Chem. 73, 177–183 (2012). doi:10.1007/s10847-011-0040-5

    Article  CAS  Google Scholar 

  11. Liu, L., He, C., Yang, L., Huang, Y., Wu, Q., Duan, W., Wang, H., Pan, Y.: Novel C1 chiral crown ethers bearing rosin acids groups: synthesis and enantiomeric recognition for ammonium salts. Tetrahedron 70, 9545–9553 (2014). doi:10.1016/j.tet.2014.10.050

    Article  CAS  Google Scholar 

  12. Ojima, I., Kumar, K., Awasthi, D., Vineberg, J.G.: Drug discovery targeting cell division proteins, microtubules and FtsZ. Bioorg. Med. Chem. 22, 5060–5077 (2014). doi:10.1016/j.bmc.2014.02.036

    Article  CAS  Google Scholar 

  13. Shults, E.E., Mironov, M.E., Kharitonov, YuV: Furanoditerpenoids of the labdane series: occurrence in plants, total synthesis, several transformations, and biological activity. Chem. Nat. Compd. 50, 2–21 (2014). doi:10.1007/s10600-014-0861-8

    Article  CAS  Google Scholar 

  14. Chae, H.-S., Chin, Y.-W.: Anti-allergic effect of lambertianic acid from Thuja orientalis in mouse bone marrow-derived mast cells. Immunopharmacol. Immunotoxicol. 34, 250–255 (2012)

    Article  CAS  Google Scholar 

  15. Shults, E.E., Velder, J., Schmalz, H.-G., Chernov, S.V., Rybalova, T.V., Gatilov, Y.V., Henze, G., Tolstikov, G.A., Prokop, A.: Gram-scale synthesis of pinusolide and evaluation of its antileukemic potential. Bioorg. Med. Chem. Lett. 16, 4228–4232 (2006). doi:10.1016/j.bmcl.2006.05.077

    Article  CAS  Google Scholar 

  16. Kharitonov, YuV, Shul’ts, E.E., Shakirov, M.M., Pokrovsky, M.A., Pokrovsky, A.G., Tolstikov, G.A.: Synthetic transformations of higher terpenoids. XXVI. 16-acetylamino-methyllabdanoids and their cytotoxicity. Russ. J. Bioorg. Chem. 38, 107–115 (2012). doi:10.1134/S1068162011060082

    Article  CAS  Google Scholar 

  17. Kharitonov, YuV, Shul’ts, E.E., Shakirov, M.M., Pokrovskii, M.A., Pokrovskii, A.G., Tolstikov, G.A.: Synthetic transformation of higher terpenoids 31. Synthesis of 1,2,3-triazolyl-containing furan labdanoids and studies of their cytotoxic activity. Russ. Chem. Bull. 62, 2046–2055 (2013). doi:10.1007/s11172-013-0297-5

    Article  CAS  Google Scholar 

  18. Kharitonov, Y.V., Shul’ts, E.E., Shakirov, M.M., Bagrayanskaya, Yu, I., Tolstikov, G.A.: Dokl. Chem. 446, 174–179 (2012). doi:10.1134/S0012500812090042

    Article  CAS  Google Scholar 

  19. Kharitonov, YuV, Shakirov, M.M., Shults, E.E.: Synthesis of macroheterocyclic compounds with a Furan bridge possessing structural fragments of 1,2,3-triazoles and natural diterpenoids. Macroheterocycles 8, 81–88 (2015). doi:10.6060/mhc141138s

    Article  Google Scholar 

  20. Tron, G.C., Pirali, T., Billington, R.A., Canonico, P.L., Sorba, G., Genazzani, A.A.: Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 28, 278–308 (2008). doi:10.1002/med.20107

    Article  CAS  Google Scholar 

  21. Pasini, D.: The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules 18, 9512–9530 (2013). doi:10.3390/molecules18089512

    Article  CAS  Google Scholar 

  22. Xu, L., Li, Y., Li, Y.: Application of “Click” chemistry to the construction of supramolecular functional systems. Asian J. Org. Chem. 3, 582–602 (2014). doi:10.1002/ajoc.201300245

    Article  CAS  Google Scholar 

  23. Schulze, B., Schubert, U.S.: Beyond click chemistry– supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev. 43, 2522–2557 (2014). doi:10.1039/c3cs60386e

    Article  CAS  Google Scholar 

  24. Chernov, S.V., Shul’ts, E.E., Shakirov, M.M., Tolstikov, G.A.: Synthetic transformations of higher terpenoids: VII. Synthesis of tetrahydro-beta-carbolines of the labdane series. Russ. J. Org. Chem. 38, 665–671 (2002). doi:10.1023/A:1019607005053

    Article  CAS  Google Scholar 

  25. Kumar, A., Pandey, P.S.: Anion recognition by 1,2,3-triazolium receptors: application of click chemistry in anion recognition. Org. Lett. 10, 165–168 (2008). doi:10.1021/ol.702457w

    Article  CAS  Google Scholar 

  26. Hu, J., Zhang, M., Yu, L.B., Ju, Y.: Synthesis and binding ability of 1,2,3-triazole-based triterpenoid receptors for recognition of Hg2+ ion. Bioorg. Med. Chem. Lett. 20, 4342–4346 (2010). doi:10.1016/j.bmcl.2010.06.079

    Article  CAS  Google Scholar 

  27. Zapata, F., Gonzalez, L., Caballero, A., Alkorta, I., Elguero, J., Molina, P.: Dual role of the 1,2,3-triazolium ring as a hydrogen-bond donor and anion-π receptor in anion-recognition processes. Chem. Eur. J. 21, 9797–9808 (2015). doi:10.1002/chem.201500231

    Article  CAS  Google Scholar 

  28. Wu, J., Gao, Y., Lu, J., Hu, J., Ju, Y.: A steroid–coumarin conjugate for cascade recognition of copper ion and dihydrogen phosphate: microstructural features and implication logic gate properties. Sens. Actuators B 206, 516–523 (2015). doi:10.1016/j.snb.2014.09.097

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under financial support in part from the Russian Science Foundation (Grant 14-13-00822) and the Russian Federation of Basic Research (project 15-03-06546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira E. Shults.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2016_596_MOESM1_ESM.docx

Supporting Information File 1: Experimental details and spectroscopic data of new compounds. Supplementary material 1 (DOCX 2768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonov, Y.V., Shakirov, M.M. & Shults, E.E. Synthesis and spectroscopic studies of chiral macrocyclic furanolabdanoids connected on the 16,17-positions by 1,2,3-triazole rings with methylene or oxamethylene units. J Incl Phenom Macrocycl Chem 84, 197–202 (2016). https://doi.org/10.1007/s10847-016-0596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0596-1

Keywords

Navigation