Log in

An edge-based algorithm for tool wear monitoring in repetitive milling processes

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In the era of Industry 4.0, cloud computing has attracted a lot of attention from industrial organizations in realizing smart manufacturing. However, considering the latency issue of cloud computing, the time-sensitive data are more suitable to be processed through edge computing close to the data source, which has been recognized as a potential solution to enable the real-time monitoring in the machining industry, especially for the small and medium-sized manufacturers. Due to the limitations of available data and computing capability at the edge location, it is still very challenging to realize edge computing for complex machining monitoring. To satisfy this research need, a calibration-based tool condition monitoring (TCM) is developed to monitor the tool wear progression in repetitive machining processes by comparing the characteristic signals generated by the reference cutting tools in the calibration procedure with the signal generated by the cutting tool being monitored through a concise similarity analysis. The proposed algorithm can be easily integrated into typical cyber-psychical systems to realize the edge computing in a very efficient and flexible way. To validate the performance of the proposed algorithm, a case study is demonstrated for tool wear monitoring of repetitive milling processes. Experimental validation has shown that the proposed calibration-based TCM algorithm can effectively realize the edge computing in tool wear monitoring through a simple calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review, Engineering, 3, 616–630. doi:https://doi.org/10.1016/J.ENG.2017.05.015

  2. Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett, 3, 18–23. doi:https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  3. Bi, Z., Da Xu, L., & Wang, C. (2014). Internet of things for enterprise systems of modern manufacturing. IEEE Trans. Ind. Informatics, 10, 1537–1546. doi:https://doi.org/10.1109/TII.2014.2300338

    Article  Google Scholar 

  4. Schröder, C. (2016). The challenges of industry 4.0 for small and medium-sized enterprises. Ger: Friedrich-Ebert-Stiftung Bonn

    Google Scholar 

  5. Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. Procedia CIRP, 38, 3–7. doi:https://doi.org/10.1016/j.procir.2015.08.026

    Article  Google Scholar 

  6. Yao, X., Zhou, J., Lin, Y., Li, Y., Yu, H., & Liu, Y. (2019). Smart manufacturing based on cyber-physical systems and beyond. J. Intell. Manuf, 30, 2805–2817

    Article  Google Scholar 

  7. Wang, J., Zhang, L., Duan, L., & Gao, R. X. (2017). A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. J. Intell. Manuf, 28, 1125–1137. doi:https://doi.org/10.1007/s10845-015-1066-0

    Article  Google Scholar 

  8. Wang, P., Gao, R. X., & Fan, Z. (2015). Cloud Computing for Cloud Manufacturing: Benefits and Limitations. J. Manuf. Sci. Eng. Trans. ASME, 137(4). doi:https://doi.org/10.1115/1.4030209

  9. Pizoń, J., & Lipski, J. (2016). Perspectives for fog computing in manufacturing. Appl. Comput. Sci. 12

  10. Liu, Y., Zhang, Y., & Wu, J. (2019). The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018), Springer Singapore, doi:https://doi.org/10.1007/978-981-13-3305-7

  11. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A. … Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Archit, 98, 289–330. doi:https://doi.org/10.1016/j.sysarc.2019.02.009

    Article  Google Scholar 

  12. Kunal, S., Saha, A., & Amin, R. (2019). An overview of cloud-fog computing: Architectures, applications with security challenges. Secur. Priv, 2, e72

    Google Scholar 

  13. Satyanarayanan, M. (2017). The emergence of edge computing. Computer (Long. Beach. Calif), 50, 30–39. doi:https://doi.org/10.1109/MC.2017.9

    Article  Google Scholar 

  14. Syafrudin, M., Fitriyani, N. L., Alfian, G., & Rhee, J. (2019). An affordable fast early warning system for edge computing in assembly line. Appl. Sci, 9(1), 84. doi:https://doi.org/10.3390/app9010084

  15. O’Donovan, P., Gallagher, C., Bruton, K., & O’Sullivan, D. T. J. (2018). A fog computing industrial cyber-physical system for embedded low-latency machine learning Industry 4.0 applications. Manuf. Lett, 15, 139–142. doi:https://doi.org/10.1016/j.mfglet.2018.01.005

    Article  Google Scholar 

  16. Li, X., Wan, J., Dai, H. N., Imran, M., **a, M., & Celesti, A. (2019). A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing. IEEE Trans. Ind. Informatics, 15, 4225–4234. doi:https://doi.org/10.1109/TII.2019.2899679

    Article  Google Scholar 

  17. Dao, N. N., Lee, Y., Cho, S., Kim, E., Chung, K. S., & Keum, C. (2017). Multi-tier multi-access edge computing: The role for the fourth industrial revolution, Int. Conf. Inf. Commun. Technol. Converg. ICT Converg. Technol. Lead. Fourth Ind. Revolution, ICTC 2017. 2017-Decem, 1280–1282. doi:https://doi.org/10.1109/ICTC.2017.8190921

  18. Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., & Guzzo, J. A. (2017). A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. J. Manuf. Syst, 43, 25–34. doi:https://doi.org/10.1016/j.jmsy.2017.02.011

    Article  Google Scholar 

  19. Dao, N. N., Vu, D. N., Lee, Y., Cho, S., Cho, C., & Kim, H. (2018 (2018)). Pattern-identified online task scheduling in multitier edge computing for industrial iot services, Mob. Inf. Syst. doi:https://doi.org/10.1155/2018/2101206

  20. Park, D., Kim, S., An, Y., Jung, J. Y., & Lired (2018). A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks. Sensors (Switzerland), 18(7), 2110. doi:https://doi.org/10.3390/s18072110

  21. Liang, Y. C., Li, W. D., Lu, X., & Wang, S. (2019). Fog computing and convolutional neural network enabled prognosis for machining process optimization. J. Manuf. Syst, 52, 32–42. doi:https://doi.org/10.1016/j.jmsy.2019.05.003

    Article  Google Scholar 

  22. Li, L., Ota, K., & Dong, M. (2018). Deep Learning for Smart Industry: Efficient Manufacture Inspection System with Fog Computing. IEEE Trans. Ind. Informatics, 14, 4665–4673. doi:https://doi.org/10.1109/TII.2018.2842821

    Article  Google Scholar 

  23. Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., & Bilbao, J. (2017). Fog computing based efficient IoT scheme for the Industry 4.0, Proc. IEEE Int. Work. Electron. Control. Meas. Signals Their Appl. to Mechatronics, ECMSM 2017. (2017) 1–6. doi:https://doi.org/10.1109/ECMSM.2017.7945879

  24. Kothuru, A., Nooka, S. P., & Liu, R. (2018). Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. Int. J. Adv. Manuf. Technol, 95, 3797–3808. doi:https://doi.org/10.1007/s00170-017-1460-1

    Article  Google Scholar 

  25. Kothuru, A., Nooka, S. P., & Liu, R. (2018). Audio-Based Tool Condition Monitoring in Milling of the Workpiece Material With the Hardness Variation Using Support Vector Machines and Convolutional Neural Networks. J. Manuf. Sci. Eng. Trans. ASME, 140, 1–9. doi:https://doi.org/10.1115/1.4040874

    Article  Google Scholar 

  26. Kothuru, A., Nooka, S. P., & Liu, R. (2019). Application of deep visualization in CNN-based tool condition monitoring for end milling. Procedia Manuf, 34, 995–1004. doi:https://doi.org/10.1016/j.promfg.2019.06.096

    Article  Google Scholar 

  27. Li, Z., Liu, R., & Wu, D. (2019). Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning. J. Manuf. Process, 48, 66–76. doi:https://doi.org/10.1016/j.jmapro.2019.10.020

    Article  Google Scholar 

  28. Chen, C. H., Lin, M. Y., & Liu, C. C. (2018). Edge Computing Gateway of the Industrial Internet of Things Using Multiple Collaborative Microcontrollers. IEEE Netw, 32, 24–32. doi:https://doi.org/10.1109/MNET.2018.1700146

    Article  Google Scholar 

  29. Chen, B., Wan, J., Celesti, A., Li, D., Abbas, H., & Zhang, Q. (2018). Edge Computing in IoT-Based Manufacturing. IEEE Commun. Mag, 56, 103–109. doi:https://doi.org/10.1109/MCOM.2018.1701231

    Article  Google Scholar 

  30. Mocanu, S., Geampalia, G., Chenaru, O., & Dobrescu, R. (2018). Fog-based solution for real-time monitoring and data processing in manufacturing, 2018 22nd Int. Conf. Syst. Theory, Control Comput. ICSTCC - Proc. (2018) 504–509. doi:https://doi.org/10.1109/ICSTCC.2018.8540783

  31. Dupont, C., Giaffreda, R., & Capra, L. (2017). Edge computing in IoT context: Horizontal and vertical Linux container migration, GIoTS 2017 - Glob. Internet Things Summit, Proc. 2–5. doi:https://doi.org/10.1109/GIOTS.2017.8016218

  32. Li, Z., Wang, W. M., Liu, G., Liu, L., He, J., & Huang, G. Q. (2018). Toward open manufacturing a cross-enterprises knowledge and services exchange framework based on blockchain and edge computing. Ind. Manag. Data Syst, 118, 303–320. doi:https://doi.org/10.1108/IMDS-04-2017-0142

    Article  Google Scholar 

  33. Helu, M., & Weiss, B. (2016). The current state of sensing, health management, and control for small-to-medium-sized manufacturers, ASME 2016 11th Int. Manuf. Sci. Eng. Conf. MSEC, 2, 1–18. doi:https://doi.org/10.1115/MSEC2016-8783

    Article  Google Scholar 

  34. Chai, X., Hou, B., Zou, P., Zeng, J., & Zhou, J. (2018). INDICS: An industrial internet platform, Proc. – 2018 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/UIC/ATC/ScalCom/CBDCo. 1824–1828. doi:https://doi.org/10.1109/SmartWorld.2018.00307

  35. Agarwal, N., & Brem, A. (2015). Strategic business transformation through technology convergence: Implications from General Electric’s industrial internet initiative. Int. J. Technol. Manag, 67, 196–214. doi:https://doi.org/10.1504/IJTM.2015.068224

    Article  Google Scholar 

  36. Nelson, R. (2017). Smart factories leverage cloud, edge computing - Evaluation Engineering. Evaluationengineering.Com, 56, 14–17

    Google Scholar 

  37. Liu, R. (2020). A novel edge computing based architecture for intelligent tool condition monitoring, in: Proc. ASME 2020 15th Int. Manuf. Sci. Eng. Conf., Cincinnati, OH, USA,

  38. Yan, D., Ding, X., Pan, S., & Huang, H. (2021). Tool Wear Prediction Based on Edge Data Processing and Deep Learning Model, in:J. Phys. Conf. Ser., : p.12165

  39. Huang, H., Yang, L., Wang, Y., Xu, X., & Lu, Y. (2021). Digital Twin-driven online anomaly detection for an automation system based on edge intelligence. J. Manuf. Syst, 59, 138–150

    Article  Google Scholar 

  40. Liu, R., Kothuru, A., & Zhang, S. (2020). Calibration-based tool condition monitoring for repetitive machining operations. J. Manuf. Syst, 54, 285–293. doi:https://doi.org/10.1016/j.jmsy.2020.01.005

    Article  Google Scholar 

  41. I.S.O. ISO, 8688-2: 1989_Tool life testing in milling—Part 2: End milling, Int. Organ. Stand. (n.d.)

  42. Machinery’s, & Handbook (2016). 30th ed.,Industrial Press, Inc.,

Download references

Acknowledgements

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R. An edge-based algorithm for tool wear monitoring in repetitive milling processes. J Intell Manuf 34, 2333–2343 (2023). https://doi.org/10.1007/s10845-022-01925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-01925-0

Keywords

Navigation