Log in

A dynamic mode decomposition based deep learning technique for prognostics

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Remaining useful life is one of the key indicators for mechanical equipment health and condition-based maintenance requirements. In fact, the field of prognostics and health management is heavily reliant on remaining useful life estimation. The availability of industrial big data has enabled promising research efforts in prognostics and health management. Deep learning techniques have been widely adopted, and proven to be successful in big data prognostics applications. However, deep learning approaches are considered black box approaches with interpretation difficulties and loss of information due to high-level feature extraction resulting from layer-by-layer processing. Enriching the deep learning input with temporal features can increase the performance of deep learning based approaches. This paper aims to improve the performance of deep learning techniques by incorporating dynamic mode decomposition into the deep learning schemes for the purposes of remaining useful life estimation. The developed method is capable of accurately predicting the remaining useful life in a data driven manner without prior knowledge of system equations. The input temporal information and health state are enriched by using dynamic mode decomposition which produces dynamic modes that approximate the infinite Koopman operator modes. The modes contain coherent time dynamics of the processed system which contribute to producing a health indicator that is representative of the system degradation. These time dependent dynamics are important characteristics of the system’s health state. The degradation profile is incorporated into deep learning schemes that accurately predict the remaining useful life of the system. To validate the proposed model, two different experimental data repositories are used in this paper. The first one is a spiral bevel gear vibration dataset. The second one consists of turbofan engines vibration datasets. The validation results have shown improved remaining useful life estimation performance when dynamic mode decomposition technique is incorporated into the deep learning schemes presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material

The data and material are available upon request.

Code availability

The code is available upon request.

References

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J. (2016). Tensorflow: A system for large-scale machine learning. In: 12th Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 265–283).

  • Akkad K., & He, D. (2019). A hybrid deep learning based approach for remaining useful life estimation. In: 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, CA, USA. Doi: https://doi.org/10.1109/ICPHM.2019.8819435

  • Akkad, K. (2019). A Physics based deep learning technique for prognostics. In: Annual Conference of the Prognostics and Health Management Society, 11(1). Doi: https://doi.org/10.36001/phmconf.2019.v11i1.916

  • Akkad, K. (2020). A dynamic mode decomposition based deep learning technique for prognostics. University of Illinois at Chicago. Thesis. Doi: https://doi.org/10.25417/uic.14134340.v1

  • Babu, G., Zhao, P., & Li, X. (2016). Deep convolutional neural network based regression approach for estimation of remaining useful life. International Conference on Database Systems for Advanced Applications, Dallas, Texas, USA. https://doi.org/10.1007/978-3-319-32025-0_14

    Article  Google Scholar 

  • Bagheri, S. (2013). Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 726, 596–623. https://doi.org/10.1017/jfm.2013.249

    Article  Google Scholar 

  • Baraldi, P., Compare, M., Sauco, S., & Zio, E. (2013). Ensemble neural network-based particle filtering for prognostics. Mechanical Systems and Signal Processing, 41(1–2), 288–300. https://doi.org/10.1016/j.ymssp.2013.07.010

    Article  Google Scholar 

  • Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Remaining useful life estimation based on nonlinear featurere reduction and support vector regression. Engineering Applications of Artificial Intelligence, 26, 1751–1760. https://doi.org/10.1016/j.engappai.2013.02.006

    Article  Google Scholar 

  • Chen, Y., **, Y., & Jiri, G. (2018). Predicting tool wear with multi-sensor data using deep belief networks. The International Journal of Advanced Manufacturing Technology, 99(5–8), 1917–1926. https://doi.org/10.1007/s00170-018-2571-z

    Article  Google Scholar 

  • Cheng, Y., Zhu, H., Wu, J., & Shao, X. (2019). Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks. IEEE Transactions on Industrial Informatics, 15(2), 987–997. https://doi.org/10.1109/TII.2018.2866549

    Article  Google Scholar 

  • Chollet, F. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/keras

  • Cui, Y., Shi, J., & Wang, Z. (2015). Complex rotation quantum dynamic neural networks (CRQDNN) using complex quantum neuron (CQN): Applications to time series prediction. Neural Networks, 71, 11–26. https://doi.org/10.1016/j.neunet.2015.07.013

    Article  Google Scholar 

  • Dempsey, P. (2011). Folders/Files for Spiral Bevel Gear Fatigue Rig Data. National Aeronautical Space Administration, Technical Report, Washington, DC, USA

  • Dempsey, P., Handschuh, R., & Afjeh, A. (2002). Spiral bevel gear damage detection using decision fusion analysis. National Aeronautical Space Administration, Washington, DC, USA, Technical Report, NASA/TM-2002–211814

  • Deutsch, J., & He, D. (2018). Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(1), 11–20. https://doi.org/10.1109/TSMC.2017.2697842

    Article  Google Scholar 

  • Deutsch, J., He, M., & He, D. (2017). Remaining useful life prediction of hybrid ceramic bearings using an integrated deep learning and particle filter approach. Applied Sciences, 7(7). Doi: https://doi.org/10.3390/app7070649

  • Dong, h., **, X., Lou, Y., & Wang, C. (2014). Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. Journal of Power Sources, 271, 114-123. Doi: https://doi.org/10.1016/j.jpowsour.2014.07.176

  • Elforjani, M. (2016). Estimation of remaining useful life of slow speed bearings using acoustic emission signals. Journal of Nondestructive Evaluation, 35(4). Doi: https://doi.org/10.1007/s10921-016-0378-0

  • Gao, Z., Ma, C., & Luo, Y. (2017). RUL prediction for IMA based on deep regression method. In: IEEE 10th International Workshop on Computational Intelligence and Applications, Hiroshima, Japan. Doi: https://doi.org/10.1109/IWCIA.2017.8203556

  • García Nieto, P. J., García-Gonzalo, E., Lasheras, F. S., & de Cos Juez, F. (2015). Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliability Engineering and System Safety, 138, 219–231. https://doi.org/10.1016/j.ress.2015.02.001

    Article  Google Scholar 

  • Graves, A., Jaitly, N., & Mohamed, A. (2013). Hybrid speech recognition with deep bidirectional LSTM. IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic. https://doi.org/10.1109/ASRU.2013.6707742

    Article  Google Scholar 

  • Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining useful life using time series embeddings based on recurrent neural networks. In: 2nd ML for PHM Workshop at SIGKDD, Halifax, Canada.

  • Guo, L., Li, N., Jia, F., Lei, Y., & Lin, J. (2017). A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing, 240, 98–109. https://doi.org/10.1016/j.neucom.2017.02.045

    Article  Google Scholar 

  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  • He, R., Dai, Y., Lu, J., & Mou, C. (2018). Develo** ladder network for intelligent evaluation system: Case of remaining useful life prediction for centrifugal pumps. Reliability Engineering and System Safety, 180, 285–293. https://doi.org/10.1016/j.ress.2018.08.010

    Article  Google Scholar 

  • Heimes, F. (2008). Recurrent neural networks for remaining useful life estimation. International Conference on Prognostics and Health Management, Denver, Colorado, USA. https://doi.org/10.1109/PHM.2008.4711422

    Article  Google Scholar 

  • Hinchi, A., & Tkiouat, M. (2018). Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network. The First International Conference on Intelligent Computing in Data Sciences. https://doi.org/10.1016/j.procs.2018.01.106

    Article  Google Scholar 

  • Hsu, C., & Jiang, R. (2018). Remaining useful life estimation using long short-term memory deep learning. Proceedings of IEEE International Conference on Applied System Innovation, Chiba, Japan. https://doi.org/10.1109/ICASI.2018.8394326

    Article  Google Scholar 

  • Huang, W., Khorasgani, H., Gupta, C., Farahat, A. & Zheng, S. (2018). Remaining useful life estimation for systems with abrupt failures. In: Annual Conference of the Prognostics and Health Management Society, Philadelphia, PA, USA. Doi: https://doi.org/10.36001/phmconf.2018.v10i1.590

  • Koopman, B. (1931). Hamiltonian systems and transformations in Hilbert space. Proceedings of the National Academy of Science, 17(5), 315–318. https://doi.org/10.1073/pnas.17.5.315

    Article  Google Scholar 

  • Koopman, B., & Neumann, J. (1932). Dynamical Systems of Continuous Spectra. Proceedings of the National Academy of Science, 18(3), 255–263. https://doi.org/10.1073/pnas.18.3.255

    Article  Google Scholar 

  • Kurata, G., Ramabhadran, B., Saon, G., Sethy, A. (2017). Language modeling with highway LSTM. IEEE Automatic Speech Recognition and Understanding Workshop, Okinawa, Japan.

  • Layman, J. (2001). The Hankel transform and some of its properties. Journal of Integer Sequences, 4.

  • Li, X., Ding, Q., & Sun, J. (2018). Remaining useful life estimation in prognostics using deep convolutional neural networks. Reliability Engineering and System Safety, 172, 1–11. https://doi.org/10.1016/j.ress.2017.11.021

    Article  Google Scholar 

  • Liao, Y., Zhang, L., & Liu, C., (2018). Uncertainty prediction of remaining useful life using long short-term memory network based on bootstrap method. In: IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA. Doi: https://doi.org/10.1109/ICPHM.2018.8448804

  • Lim, P., Goh, C., Tan, K., and Dutta, P., (2014). Estimation of remaining useful life based on switching Kalman filter neural network ensemble. In:2014 Annual Conference of the Prognostics and Health Management Society, Fort Worth, Texas, USA. Doi: https://doi.org/10.36001/phmconf.2014.v6i1.2348

  • Lin, Y., Li, X., & Hu, Y., Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications. Applied Soft Computing, 72, 555–564. Doi: https://doi.org/10.1016/j.asoc.2018.01.036

  • Ma, J., Su, H., Zhao, W., & Liu, B. (2018). Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning. Complexity. https://doi.org/10.1155/2018/3813029

    Article  Google Scholar 

  • Maksimenko, V., Kurkin, S., Pitsik, E., Musatov, V., Runnova, A., Efremova, T., Hramov, A., & Pisarchik, A. (2018). Artificial neural network classification of motor-related EEG: An increase in classification accuracy by reducing signal complexity. Complexity. https://doi.org/10.1155/2018/9385947

    Article  Google Scholar 

  • Malhotra, P., Tv, V., & Ramakrishnan, A. (2016). Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. In:ACM SIGKDD Workshop on Machine Learning for Prognostics and Health Management, San Francisco, CA, USA.

  • Ng, S., **ng, Y., & Tsui, k. (2014). A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 118, 114-123. Doi: https://doi.org/10.1016/j.apenergy.2013.12.020

  • Niu, G., Tang, S., Liu, Z., Zhao, G., & Zhang, B. (2018). Fault diagnosis and prognosis based on deep belief network and particle filtering. In: Annual Conference of the Prognostics and Health Management Society, Philadelphia, Pennsylvania, USA. Doi: https://doi.org/10.36001/phmconf.2018.v10i1.540

  • Palau, A., Bakliwal, K., Dhada, M., Pearce, T., & Parlikad, A. (2018). Recurrent neural networks for real-time distributed collaborative prognostics. In: IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA. Doi: https://doi.org/10.1109/ICPHM.2018.8448622

  • Qu, J., Liu, F., Ma, Y., & Fan, J. (2019). A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery. IEEE Access, 7, 87178–87191. Doi: https://doi.org/10.1109/ACCESS.2019.2925468.

  • Rao, Y., Nagabhooshanam, E., & Prathapani, N. (2014). Robust video watermarking algorithms based on Svd transform. International Conference on Information Communication and Embedded Systems, Chennai, India. https://doi.org/10.1109/ICICES.2014.7034015

    Article  Google Scholar 

  • Ren, L., Cui, J., Sun, Y., & Cheng, X. (2017). Multi-bearing remaining useful life collaborative prediction: A deep learning approach. Journal of Manufacturing Systems, 43(2), 248–256. https://doi.org/10.1016/j.jmsy.2017.02.013

    Article  Google Scholar 

  • Ren, L., Sun, Y., Cui, J., & Zhang, L. (2018). Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems, 48(c), 71–77. Doi: https://doi.org/10.1016/j.jmsy.2018.04.008

  • Ren, L., Sun, Y., Wang, H., & Zhang, L. (2018b). Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access, 6, 13041–13049. https://doi.org/10.1109/ACCESS.2018.2804930

    Article  Google Scholar 

  • Ren, L., Zhao, L., Hong, S., Zhao, S., Wang, H., & Zhang, L. (2018). Remaining useful life prediction for lithium-ion battery: A deep learning approach. IEEE Access, 6, 50587–50598. https://doi.org/10.1109/ACCESS.2018.2858856

    Article  Google Scholar 

  • Saxena A., & Goebel, K. (2008). Turbofan Engine Degradation Simulation Data Set. NASA Ames Prognostics Data Repository. [Online]. Available: http://ti.arc.nasa.gov/project/prognostic-data-repository. Accessed January 2019.

  • Schmid, P. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656, 5–28. https://doi.org/10.1017/S0022112010001217

    Article  Google Scholar 

  • Schmid, P., & Sesterhenn, J. (2008). Dynamic Mode Decomposition of numerical and experimental data. In: American Physical Society, 61st Annual Meeting of the APS Division of Fluid Dynamics.

  • Schmid, P., Li, L., Juniper, M., & Pust, O. (2011). Applications of the dynamic mode decomposition. Theoretical and Computational Fluid Dynamics, 25, 249–259. https://doi.org/10.1007/s00162-010-0203-9

    Article  Google Scholar 

  • Schmid, P., Meyer, K., & Pust, O. (2009). Dynamic mode decomposition and proper orthogonal decomposition of flow in a lid-driven cylindrical cavity. In: 8th International Symposium on Particle Image Velocimetry, Melbourne, Victoria, Australia. https://hal-polytechnique.archives-ouvertes.fr/hal-01053392

  • Tran, V. T., Yang, B., & Tan, A. (2009). Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems. Expert Systems with Applications, 36, 9378–9387. https://doi.org/10.1016/j.eswa.2009.01.007

    Article  Google Scholar 

  • Tu, J., Rowley, C., Luchtenburg, D., Brunton, S., & Kutz, J. (2014). On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2), 391–421. https://doi.org/10.3934/jcd.2014.1.391

    Article  Google Scholar 

  • Tv, V., Gupta, P., Malhotra, P., Vig, L., & Shroff, G. (2018). Recurrent neural networks for online remaining useful life estimation in ion mill etching system. In: Annual Conference of the Prognostics and Health Management Society, Philadelphia, PA, USA. Doi: https://doi.org/10.36001/phmconf.2018.v10i1.589

  • Tv, V., Malhotra, P., Vig, L., & Shroff, G. (2018). Deep ordinal regression for remaining useful life estimation from censored data. In: Joint Workshop on Deep Learning for Safety-Critical Applications in Engineering, Stockholm, Sweden.

  • Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.

  • Vardhana, M., Arunkumar, N., Lasrado, S., Abdulhay, E., & Ramirez-Gonzalez, G. (2018). Convolutional neural network for bio-medical image segmentation with hardware acceleration. Cognitive Systems Research, 50, 10–14. https://doi.org/10.1016/j.cogsys.2018.03.005

    Article  Google Scholar 

  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  • Wu, Q., Ding, K., & Huang, B. (2018a). Approach for fault prognosis using recurrent neural network. Journal of Intelligent Manufacturing, 31, 1–13. https://doi.org/10.1007/s10845-018-1428-5

    Article  Google Scholar 

  • Wu, Y., Yuan, M., Dong, S., Lin, l., & Liu, Y. (2018b). Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 275, 167–179. Doi: 10.1016/j.neucom.2017.05.063.

  • **a, M., Li, T., Liu, L., Xu, L., Gao, S., & DeSilva, C. (2017). Remaining useful life prediction of rotating machinery using hierarchical deep neural network. In: IEEE International Conference on Systems, Man, and Cybernetics, Banff, Alberta, Canada. Doi: https://doi.org/10.1109/SMC.2017.8123047

  • **a, M., Li, T., Shu, T., Wan, J., de Silva, C., & Wang, Z. (2018). A two-stage approach for the remaining useful life prediction of bearings using deep neural networks. IEEE Transactions on Industrial Informatics, 15(6). Doi: https://doi.org/10.1109/TII.2018.2868687

  • Yan, H., Wan, J., Zhang, T., & S., Hua, Q., & Wang, Z. (2018). Industrial big data analytics for prediction of remaining useful Life based on deep learning. IEEE Access, 6, 17190–17197. https://doi.org/10.1109/ACCESS.2018.2809681

    Article  Google Scholar 

  • Yoo, Y., & Baek, J. (2018). A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network. Applied Sciences, 8(7). Doi: https://doi.org/10.3390/app8071102

  • Yuan, M., Wu, Y., & Lin, L. (2016). Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In: IEEE/CSAA International Conference on Aircraft Utility Systems (AUS), Bei**g,China. Doi: https://doi.org/10.1109/AUS.2016.7748035

  • Zhang, C., Lim, P., Qin, A., & Tan, K. (2017). Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2306–2318. https://doi.org/10.1109/TNNLS.2016.2582798

    Article  Google Scholar 

  • Zhang, J., Wang, P., Yan, R., & Gao, R. (2018). Deep learning for improved system remaining life prediction. In: 51st CIRP Conference on Manufacturing Systems. Doi: https://doi.org/10.1016/j.procir.2018.03.262.

  • Zhang, J., Wang, P., Yan, R., & Gao, R. (2018b). Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems, 48, 78–86. https://doi.org/10.1016/j.jmsy.2018.05.011

    Article  Google Scholar 

  • Zhang, Y., **ong, R., He, H., & Liu, Z. (2017). A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. In: 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China. Doi: https://doi.org/10.1109/PHM.2017.8079316

  • Zhang, Y., **ong, R., He, H., & Pecht, M. (2018). Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology, 67(7), 5695–5705. https://doi.org/10.1109/TVT.2018.2805189

    Article  Google Scholar 

  • Zhao, G., Liu, X., Zhang, B., Zhang, G., Niu G., & Hu, C. (2017). Bearing health condition prediction using deep belief network. In: Annual Conference of the Prognostics and Health Management Society, St. Petersburg, Florida, USA. Doi: https://doi.org/10.36001/phmconf.2017.v9i1.2484

  • Zhao, L., & Wang, X. (2018). A deep feature optimization fusion method for extracting bearing degradation features. IEEE Access, 6, 19640–19653. https://doi.org/10.1109/ACCESS.2018.2824352

    Article  Google Scholar 

  • Zhao, R., Yan, R., Wang, J., & Mao, K. (2017). Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors, 17(2). Doi: https://doi.org/10.3390/s17020273

  • Zheng, S., Ristovski, K., Farahat, A., Gupta, C. (2017). Long short-term memory network for remaining useful life estimation. In: IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA. Doi: https://doi.org/10.1109/ICPHM.2017.7998311

  • Zhou, F., Hu, P., & Yang, X. (2018). RUL prognostics method based on real time updating of LSTM parameters. In: Chinese Control And Decision Conference (CCDC), Shenyang, China. Doi: https://doi.org/10.1109/CCDC.2018.8407812

  • Zhu, J., Chen, N., & Peng, W. (2018). Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Transactions on Industrial Electronics, 66(4), 3208–3216. https://doi.org/10.1109/TIE.2018.2844856

    Article  Google Scholar 

Download references

Acknowledgements

The majority of this work was previously published in a doctoral dissertation (Akkad, 2020) and therefore is considered, in part, a re-use of said dissertation.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Akkad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkad, K., He, D. A dynamic mode decomposition based deep learning technique for prognostics. J Intell Manuf 34, 2207–2224 (2023). https://doi.org/10.1007/s10845-022-01916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-01916-1

Keywords

Navigation