Log in

Functional composition and phenology of fruit-feeding butterflies in a fragmented landscape: variation of seasonality between habitat specialists

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

For butterflies, tolerance to the matrix may be an important criterion of habitat occurrence in fragmented landscapes. Here we examine the relative effects of habitat fragmentation and the surrounding agricultural matrix on the functional composition of fruit-feeding butterflies of the Atlantic rain forest in southeastern Brazil. Generalized linear models were used to detect the effects of landscape metrics on butterfly richness and abundance of the total assemblage and functional groups. Circular statistics were used to analyze the patterns of monthly abundance of the total assemblage and functional groups in the forest remnants and the surrounding matrices. In total, 650 butterflies representing 57 species were captured; species composition differed significantly between the forest fragments and the surrounding matrices. We recorded 22 forest specialists, 18 matrix specialists, 11 common species with matrix preference and six common species with forest preference. Forest connectivity favored the richness of forest specialists, while habitat fragmentation enhances the richness and abundance of matrix-tolerant species. Circular analysis revealed that forest specialists were more abundant in the rainy season while matrix-tolerant species proliferated in the dry season. Although maintaining connectivity of forest fragments may increase the mobility and dispersion of forest species, our results showed that landscape fragmentation modify butterfly assemblage by promoting an increase of matrix tolerant species with detriment of forest specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Beccaloni GW, Hall SK, Viloria AL, Robinson GS (2008) Catalogue of the hostplants of the Neotropical butterflies/Catálogo de las plantas huésped de las mariposas Neotropicales. In: Ribescyted SEA (ed) Monografias Tercer Milenio, vol 8. The Natural History Museum, Instituto Venezolano de Investigaciones Científica, Zaragoza

    Google Scholar 

  • Bender D, Fahrig L (2005) Matrix structure obscures the relationship between interpatch movement and patch size and isolation. Ecology 86:1023–1033. doi:10.1890/03-0769

    Article  Google Scholar 

  • Brower LP (1996) Monarch butterfly orientation: missing pieces of a magnificent puzzle. J Exp Biol 199:93–103

    PubMed  Google Scholar 

  • Brown KS Jr (1992) Borboletas da Serra do Japi: diversidade, habitats, recursos alimentares e variação temporal. In: Morellato LPC (ed) História Natural da Serra do Japi: Ecologia e Preservação de uma área Florestal no Sudeste do Brasil. Editora Unicamp, Campinas, pp 142–186

    Google Scholar 

  • Brown KS Jr, Brown GG (1992) Habitat alteration and species loss in Brazilian forests. In: Whitmore TC, Sayer JA (eds) Tropical deforestation and species extinctions. Chapman and Hall, Londres, pp 119–140

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Clarke KR, Green RH (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser 46:213–226. doi:10.3354/meps046213

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. http://purloclc.org/estimates. Accessed 22 Nov 2013

  • Costa CMR (1998) Biodiversidade em Minas Gerais: um atlas para a sua conservação. Fundação Biodiversitas, Belo Horizonte

    Google Scholar 

  • De’ath G, Fabricius E (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192. doi:10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2

  • Dennis RLH, Hardy PB (2007) Support for mending the matrix: resource seeking by butterflies in apparent non-resource zones. J Insect Conserv 11:157–168. doi:10.1007/s10841-006-9032-y

    Article  Google Scholar 

  • Devries PJ (1987) The butterflies of Costa Rica and their natural history: Papilionidae, Pieridae, and Nymphalidae. Princeton University Press, Princeton

    Google Scholar 

  • Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260. doi:10.1016/0169-5347(96)20047-3

    Article  CAS  PubMed  Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kuhn I, Ohlemuller R, Peres-Neto PR, Reineking B, Schroder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi:10.1111/j.2007.0906-7590.05171.x

    Article  Google Scholar 

  • Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27. doi:10.1007/s10841-008-9135-8

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015. doi:10.1111/j.1365-2435.2007.01326.x

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  CAS  PubMed  Google Scholar 

  • Freitas AVL, Brown KS Jr (2004) Phylogeny of the Nymphalidae (Lepidoptera). Syst Biol 53:363–383. doi:10.1080/10635150490445670

    Article  PubMed  Google Scholar 

  • Fundação SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais (2009) Atlas dos remanescentes florestais da Mata Atlântica, período de 2005–2008. Fundação SOS Mata Atlântica & São Jose dos Campos, INPE, São Paulo

    Google Scholar 

  • Hamer KC, Hill JK, Mustaffa N, Benedick S, Sherratt TN, Chey VK, Maryati M (2005) Temporal variation in abundance and diversity of butterflies in Bornean rain forests: opposite impacts of logging recorded in different seasons. J Trop Ecol 21:1–9. doi:10.1017/S0266467405002361

    Article  Google Scholar 

  • Hamer KC, Hill JK, Benedick S, Mustaffa N, Chey VK, Mohamed M (2006) Diversity and ecology of carrion and fruit-feeding butterflies in Bornean rainforest. J Trop Ecol 22:25–33. doi:10.1017/S0266467405002750

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hogue CL (1993) Latin American: insects and entomology. University of California Press, Berkeley

    Google Scholar 

  • IBGE (2004) Mapa de biomas do Brasil. Escala 1:5.000.000. Rio de Janeiro. http://mapas.ibge.gov.br/biomas2/viewer.htm. Accessed 15 Aug 2011

  • Jokimaki J, Huhta E (1996) Effects of landscape matrix and habitat structure on a bird community in northern Finland: a multi-scale approach. Ornis Fenn 73:97–113

    Google Scholar 

  • Knowlton JL, Graham CH (2010) Using behavioral landscape ecology to predict species’ responses to land use and climate change. Biol Conserv 143:1342–1354. doi:10.1016/j.biocon.2010.03.011

    Article  Google Scholar 

  • Kovach WL (2010) Oriana for Windows, version 3.0. Kovach Computer Services, Pentraeth

    Google Scholar 

  • Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:836. doi:10.1038/35009032

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside F, Ribeiro JELS, Capretz RL (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469–482. doi:10.1890/05-0064

    Article  PubMed  Google Scholar 

  • Lomolino M, Perault D (2001) Island biogeography and landscape ecology of mammals inhabiting fragmented, temperate rain forests. Glob Ecol Biogeogr 10:113–132. doi:10.1046/j.1466-822x.2001.00221.x

    Article  Google Scholar 

  • Lopes AV, Girão LC, Santos BA, Peres CA, Tabarelli M (2009) Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. Biol Conserv 142:1154–1165. doi:10.1016/j.biocon.2009.01.007

    Article  Google Scholar 

  • Marini-Filho OJ, Martins RP (2010) Nymphalid butterfly dispersal among forest fragments at Serra da Canastra National Park, Brazil. J Insect Conserv 14:401–411. doi:10.1007/s10841-010-9271-9

    Article  Google Scholar 

  • McIntire EJB, Schultz CB, Crone EE (2007) Designing a network for butterfly habitat restoration: where individuals, populations and landscapes interact. J Appl Ecol 44:725–736. doi:10.1111/j.1365-2664.2007.01326.x

    Article  Google Scholar 

  • Molleman F, Kop A, Brakefield PM, DeVries PJ, Zwaan BS (2006) Vertical and temporal patterns of biodiversity of fruit-feeding butterflies in a tropical forest in Uganda. Biodivers Conserv 15:107–121. doi:10.1007/s10531-004-3955-y

    Article  Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic forest. Biotropica 32:786–792. doi:10.1111/j.1744-7429.2000.tb00618.x

    Article  Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823. doi:10.1111/j.1744-7429.2000.tb00620.x

    Article  Google Scholar 

  • Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, Berlin, pp 339–359

    Chapter  Google Scholar 

  • Munguira ML, García-Barros E, Cano MJ (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  • Murakami M, Ichie T, Hirao T (2008) Beta-diversity of lepidopteran larval communities in a Japanese temperate forest: effects of phenology and tree species. Ecol Res 23:179–187. doi:10.1007/s11284-007-0353-4

    Article  Google Scholar 

  • Novotny V, Basset Y (1998) Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia 115:514–522

    Article  Google Scholar 

  • Novotny V, Miller SE, Leps J, Basset Y, Bito D, Janda M, Hulcr J, Damas K, Weiblen GD (2004) No tree an island: the plant–caterpillar food web of a secondary rain forest in New Guinea. Ecol Lett 7:1090–1100

    Article  Google Scholar 

  • Otero LS (1971) Insetos brasileiros e seu meio. Koyo Shoin Comp. Ltda, Tokyo

    Google Scholar 

  • Peña C, Wahlberg N (2008) Prehistorical climate change increased diversification of a group of butterflies. Biol Lett 4:274–278. doi:10.1098/rsbl.2008.0062

    Article  PubMed Central  PubMed  Google Scholar 

  • Perfecto I, Vandermeer J (2002) Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conserv Biol 16:174–182. doi:10.1046/j.1523-1739.2002.99536.x

    Article  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair RE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci USA 105:20770–20775. doi:10.1073/pnas.0806080105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos FN, Santos FAM (2005) Phenology of Psychotria tenuinervis (Rubiaceae) in Atlantic forest fragments. Can J Bot 83:1305–1316. doi:10.1139/b05-106

    Article  Google Scholar 

  • Ribeiro DB, Freitas AVL (2011) Large-sized insects show stronger seasonality than small-sized ones: a case study of fruit-feeding butterflies. Biol J Linn Soc 104:820–827

    Article  Google Scholar 

  • Ribeiro DB, Prado PI, Brown KS Jr, Freitas AVL (2010) Temporal diversity patterns and phenology in fruit-feeding butterflies in the Atlantic forest. Biotropica 42:710–716. doi:10.1111/j.1744-7429.2010.00648.x

    Article  Google Scholar 

  • Ribeiro DB, Batista R, Prado PI, Brown KS Jr, Freitas AV (2012) The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodivers Conserv 21:811–827. doi:10.1007/s10531-011-0222-x

    Article  Google Scholar 

  • Ricketts NT (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99. doi:10.1086/320863

    Article  CAS  PubMed  Google Scholar 

  • Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70:840–852. doi:10.1046/j.0021-8790.2001.00546.x

    Article  Google Scholar 

  • Rosch V, Tscharntke T, Scherber C, Batáry P (2013) Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. J App Ecol 50:387–394. doi:10.1111/1365-2664.12056

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32. doi:10.1111/j.1523-1739.1991.tb00384.x

    Article  Google Scholar 

  • Shuey JA (1997) An optimizing portable bait trap for quantitative sampling of butterflies. Trop Lepid 8:1–4

    Google Scholar 

  • Uehara-Prado M, Brown KS, Freitas AVL (2007) Species richness, composition and abundance of fruitfeeding butterflies in the Brazilian Atlantic forest: comparison between a fragmented and a continuous landscape. Glob Ecol Biogeogr 16:43–54. doi:10.1111/j.1466-8238.2006.00267.x

    Article  Google Scholar 

  • Umetsu F, Metzger JP, Pardini R (2008) Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: a test with Atlantic forest small mammals. Ecography 31:359–370. doi:10.1111/j.0906-7590.2008.05302.x

    Article  Google Scholar 

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of diversity: recent revival of an old idea. Oikos 99:3–9. doi:10.1034/j.1600-0706.2002.990101.x

    Article  Google Scholar 

  • Vos CC, Berry P, Opdam P, Baveco H, Nijhof B, O’Hanley J, Bell C, Kuipers H (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731. doi:10.1111/j.1365-2664.2008.01569.x

    Article  Google Scholar 

  • Wahlberg N, Leneveu J, Kodandaramaiah U, Pena C, Nylin S, Freitas AVL, Brower AVZ (2009) Nymphalid butterflies diversify following near demise at the cretaceous/tertiary boundary. Proc R Soc Lond B Biol Sci 276:4295–4302

    Article  Google Scholar 

  • Walla TR, Engen S, DeVries PJ, Lande R (2004) Modeling vertical beta-diversity in tropical butterfly communities. Oikos 107:610–618. doi:10.1111/j.0030-1299.2004.13371.x

    Article  Google Scholar 

  • Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL (2011) Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Grob Ecol Biogeogr 20:209–217. doi:10.1111/j.1466-8238.2010.00586.x

    Google Scholar 

  • Wirth R, Meyer ST, Leal IR, Tabarelli M (2008) Plant–herbivore interactions at the forest edge. Prog Bot 68:423–448. doi:10.1007/978-3-540-72954-9_17

    Article  Google Scholar 

  • Wolda H (1989) Seasonal cues in tropical organisms: rainfall? Not necessarily! Oecologia 80:437–442. doi:10.1007/BF00380064

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

We thank André Freitas for their great help in identifying the butterflies and making possible the access to the collections of the University of Campinas (Unicamp). Karina L. Silva-Brandão, Martin Pareja and the anonymous referee made valuable suggestions in the manuscript. We also thank Alexandre M. Dos Santos (PIBICT/Fapemig) and Eduardo Loureiro Abreu who helped throughout the field work. This research was financially supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior to M. Monteiro. The project was supported by FAPEMIG/Vale Company (RDP-00104-10), as well as CNPq (472250/2010-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Arab.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, M.M., Ribeiro, D.B., Raniero, M. et al. Functional composition and phenology of fruit-feeding butterflies in a fragmented landscape: variation of seasonality between habitat specialists. J Insect Conserv 18, 547–560 (2014). https://doi.org/10.1007/s10841-014-9650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9650-8

Keywords

Navigation