Log in

Scattering of Laguerre–Gaussian beam from a chiral-coated perfect electromagnetic conductor (PEMC) cylinder

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A theoretical analysis of Laguerre–Gaussian (LG) beam scattering from a chiral-coated perfect electromagnetic conductor (PEMC) cylinder is presented. The analytical treatment of the electromagnetic fields is characterized within the framework of Mie theory. LG beam expressions are modeled by taking into account the plane wave scattering and electrostatic LG potential. The analytical formulation is constructed for parallel polarization, and perpendicular polarization can be formulated using the duality principle. To determine the unknown scattering coefficients, the specific boundary conditions are applied at each interface of the chiral-coated perfect electromagnetic conductor (PEMC) cylinder. The influence of beam parameters including the radial mode \((p)\), azimuthal mode \((l)\), and beam waist radius \({(w}_{0})\) on the normalized bistatic radar cross section (RCS) is examined for the double-positive and double-negative chiral cores. The proposed model for LG beam scattering under special conditions perfectly matches the plane wave scattering for the PEMC chiral-coated cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Allen, L., Beijersbergen, M.W., Spreeuw, R., Woerdman, J.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  Google Scholar 

  2. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)

    Article  Google Scholar 

  3. Cojoc, D., Garbin, V., Ferrari, E., Businaro, L., Romanato, F., Di Fabrizio, E.: Laser trap** and micro-manipulation using optical vortices. Microelectron. Eng. 78, 125–131 (2005)

    Article  Google Scholar 

  4. Brunet, C., Rusch, L.A.: Optical fibers for the transmission of orbital angular momentum modes. Opt. Fiber Technol. 35, 2–7 (2017)

    Article  Google Scholar 

  5. Cheong, W., Lee, W., Yuan, X.-C., Zhang, L.-S., Dholakia, K., Wang, H.: Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation. Appl. Phys. Lett. 85, 5784–5786 (2004)

    Article  Google Scholar 

  6. Jones, P., Maragó, O., Volpe, G.: Optical Tweezers. Cambridge University Press, London (2015)

    Book  Google Scholar 

  7. Meng, L., Kong, Q., Ji, K., Han, Z., Shen, H., Zhu, R.: Characterization of beam quality of unstable laser beams with the multiple hyperbolas method. Results Phys. 12, 38–45 (2019)

    Article  Google Scholar 

  8. Miao, P., Zhang, Z., Sun, J., Walasik, W., Longhi, S., Litchinitser, N.M., Feng, L.: Orbital angular momentum microlaser. Science 353, 464–467 (2016)

    Article  Google Scholar 

  9. Tyler, G.A., Boyd, R.W.: Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 34, 142–144 (2009)

    Article  Google Scholar 

  10. Padgett, M., Courtial, J., Allen, L.: Light’s orbital angular momentum. Phys. Today 57, 35–40 (2004)

    Article  Google Scholar 

  11. Torres, J.P., Torner, L.: Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley, New Jersey (2011)

    Book  Google Scholar 

  12. Yu, M., Han, Y., Cui, Z., Sun, H.: Scattering of a Laguerre-Gaussian beam by complicated shaped biological cells. JOSA A 35, 1504–1510 (2018)

    Article  Google Scholar 

  13. Qu, T., Wu, Z., Shang, Q., Li, Z., Wu, J., Li, H.: Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres. J. Quant. Spectrosc. Radiat. Transf. 209, 1–9 (2018)

    Article  Google Scholar 

  14. Jiang, Y., Shao, Y., Qu, X., Ou, J., Hua, H.: Scattering of a focused Laguerre-Gaussian beam by a spheroidal particle. J. Opt. 14, 125709 (2012)

    Article  Google Scholar 

  15. Qu, T., Wu, Z.-S., Shang, Q.-C., Li, Z.-J.: Light scattering of a Laguerre-Gaussian vortex beam by a chiral sphere. JOSA A 33, 475–482 (2016)

    Article  Google Scholar 

  16. Zambrana-Puyalto, X., Molina-Terriza, G.: The role of the angular momentum of light in Mie scattering. Excitation of dielectric spheres with Laguerre-Gaussian modes. J. Quant. Spectrosc. Radiat. Transf. 126, 50–55 (2013)

    Article  Google Scholar 

  17. Li, H., Honary, F., Wu, Z., Bai, L.: Reflection and transmission of Laguerre-Gaussian beams in a dielectric slab. J. Quant. Spectrosc. Radiat. Transfer 195, 35–43 (2017)

    Article  Google Scholar 

  18. van De Nes, A., Torok, P.: Rigorous analysis of spheres in Gauss-Laguerre beams. Opt. Exp. 15, 13360–13374 (2007)

    Article  Google Scholar 

  19. Abadla, M.M., Taya, S.A.: Theoretical investigation of guided modes in planar waveguides having chiral negative index metamaterial core layer. Optik 131, 562–573 (2017)

    Article  Google Scholar 

  20. Helal, A.N.A., Elwasife, K.Y., Taya, S.A.: Characteristics of electromagnetic waves in slab waveguide structures comprising chiral nihility film and left-handed material claddings. Optik 149, 332–343 (2017)

    Article  Google Scholar 

  21. Abu Helal, A.N., Taya, S.A., Elwasife, K.Y.: Propagation of electromagnetic waves in slab waveguide structure consisting of chiral nihility claddings and negative-index material core layer. Photonic Sensors 8 (2018).

  22. Taya, S.A.: P-polarized surface waves in a slab waveguide with left-handed material for sensing applications. J. Magn. Magn. Mater. 377, 281–285 (2015)

    Article  Google Scholar 

  23. Taya, S.A.: Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Opto-Electron. Rev. 22, 252–257 (2014)

    Article  Google Scholar 

  24. Al-Kanhal, M.A., Arvas, E.: Electromagnetic scattering from a chiral cylinder of arbitrary cross section. IEEE Trans. Antennas Propag. 44, 1041–1048 (1996)

    Article  Google Scholar 

  25. Engheta, N., Jaggard, D.L.: Electromagnetic chirality and its applications. IEEE Antennas Propag. Soc. Newsl. 30, 6–12 (1988)

    Article  Google Scholar 

  26. Jaggard, D., Mickelson, A., Papas, C.: On electromagnetic waves in chiral media. Appl. Phys. 18, 211–216 (1979)

    Article  Google Scholar 

  27. Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–11 (2007)

    Article  Google Scholar 

  28. Lakhtakia, A., Varadan, V.K., Varadan, V.V.: Time-Harmonic Electromagnetic Fields in Chiral Media. Springer (1989)

  29. Ghaffar, A., Ahmad, S., Fazal, R., Shukrullah, S., Naqvi, Q.: Scattering of electromagnetic wave by perfect electromagnetic conductor (PEMC) sphere placed in chiral media. Optik 124, 4947–4951 (2013)

    Article  Google Scholar 

  30. Lindell, I.V., Sihvola, A.H.: Transformation method for problems involving perfect electromagnetic conductor (PEMC) structures. IEEE Trans. Antennas Propag. 53, 3005–3011 (2005)

    Article  Google Scholar 

  31. Lindell, I.V., Sihvola, A.H.: Perfect electromagnetic conductor. J. Electromagn. Waves Appl. 19, 861–869 (2005)

    Article  MathSciNet  Google Scholar 

  32. Ruppin, R.: Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder. J. Electromagn. Waves Appl. 20, 1853–1860 (2006)

    Article  Google Scholar 

  33. Sihvola, A., Lindell, I.V.: Possible applications of perfect electromagnetic conductor (PEMC) media. In: 2006 First European Conference on Antennas and Propagation, IEEE, pp. 1–4 (2006).

  34. Ahmed, S., Manan, F., Shahzad, A., Naqvi, Q.A.: Electromagnetic scattering from a chiral-coated PEMC cylinder. Prog. Electromagn. Res. 19, 239–250 (2011)

    Article  Google Scholar 

  35. Mendonca, J., Ali, S., Thidé, B.: Plasmons with orbital angular momentum. Phys. Plasmas 16, 21031–21035 (2009)

    Article  Google Scholar 

  36. Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, New York (2012)

    Google Scholar 

  37. Ahmed, S., Naqvi, Q.: Electromagnetic scattering from a perfect electromagnetic conductor circular cylinder coated with a metamaterial having negative permittivity and/or permeability. Opt. Commun. 281, 5664–5670 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research (DSR) at King Saud University, Riyadh, Saudi Arabia for their financial support through the Research Group Project No. RG-1436-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghaffar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfan, M., Alkanhal, M.A.S., Ghaffar, A. et al. Scattering of Laguerre–Gaussian beam from a chiral-coated perfect electromagnetic conductor (PEMC) cylinder. J Comput Electron 21, 253–262 (2022). https://doi.org/10.1007/s10825-021-01834-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01834-0

Keywords

Navigation