Log in

Meiotic maturation failure in primary ovarian insufficiency: insights from a bovine model

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Oocytes from women presenting primary ovarian insufficiency (POI) generate viable embryos at a lower rate than non-POI women, but the mechanisms responsible for the lower oocyte quality remain elusive. Due to the scarcity of human oocytes for research, animal models provide a promising way forward. We aimed at investigating the molecular events characterizing final maturation in POI oocytes in a well-defined POI-like bovine model.

Methods

Single-cell RNA-sequencing of bovine control and POI-like, GV, and MII oocytes (n = 5 per group) was performed. DEseq2 was used to identify differentially expressed genes. Further, a Gene set enrichment analysis and a transcriptomic meta-analysis between bovine and human oocytes were performed.

Results

In control cows, we found 2223 differentially expressed genes between the GV and MII stages. Specifically, the affected genes were related to RNA processing and transport, protein synthesis, organelle remodeling and reorganization, and metabolism. The meta-analysis with a set of young human oocytes at different maturation stages revealed 315 conserved genes through the GV-MII transition in cows and humans, mostly related to meiotic progression and cell cycle. Gene expression analysis between GV and MII of POI-like oocytes showed no differences in terms of differentially expressed genes, pointing towards a substantial failure to properly remodel the transcriptome in the POI model, and with the clustering analysis indicating that the cow’s genetic background had a higher impact than the oocyte’s maturation stage.

Conclusion

Overall, we have identified and characterized a valuable animal model of POI, paving the way to identifying new molecular mechanisms involved in POI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alviggi C, Humaidan P, Howles CM, Tredway D, Hillier SG. Biological versus chronological ovarian age: implications for assisted reproductive technology. Reprod Biol Endocrinol RB&E. 2009;7:101. https://doi.org/10.1186/1477-7827-7-101.

    Article  CAS  Google Scholar 

  2. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30(5):465–93. https://doi.org/10.1210/er.2009-0006.

    Article  CAS  PubMed  Google Scholar 

  3. McGlacken-Byrne SM, Conway GS. Premature ovarian insufficiency. Best Pract Res Clin Obstet Gynecol. 2022;81:98–110. https://doi.org/10.1016/J.BPOBGYN.2021.09.011.

    Article  Google Scholar 

  4. Shestakova IG, Radzinsky VE, Khamoshina MB. Occult form of premature ovarian insufficiency. Gynecol Endocrinol. 2016;32:30–2. https://doi.org/10.1080/09513590.2016.1232676.

    Article  CAS  PubMed  Google Scholar 

  5. De Vos M, Devroey P, Fauser BC. Primary ovarian insufficiency. Lancet (London England). 2010;376(9744):911–21. https://doi.org/10.1016/S0140-6736(10)60355-8.

    Article  PubMed  Google Scholar 

  6. Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–14. https://doi.org/10.1056/NEJMCP0808697.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lodde V, Luciano AM, Musmeci G, Miclea I, Tessaro I, Aru M, Albertini DF, Franciosi F. A Nuclear and Cytoplasmic Characterization of Bovine Oocytes Reveals That Cysteamine Partially Rescues the Embryo Development in a Model of Low Ovarian Reserve. Animals. 2021;11(7). https://doi.org/10.3390/ANI11071936.

  8. Luciano AM, Franciosi F, Lodde V, Tessaro I, Corbani D, Modina SC, Peluso JJ. Oocytes isolated from dairy cows with reduced ovarian reserve have a high frequency of aneuploidy and alterations in the localization of progesterone receptor membrane component 1 and aurora kinase B. Biol Reprod. 2013;88(3). https://doi.org/10.1095/BIOLREPROD.112.106856.

  9. Malhi PS, Adams GP, Singh J. Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol Reprod. 2005;73(1):45–53. https://doi.org/10.1095/BIOLREPROD.104.038745.

    Article  CAS  PubMed  Google Scholar 

  10. Modina SC, Tessaro I, Lodde V, Franciosi F, Corbani D, Luciano AM. Reductions in the number of mid-sized antral follicles are associated with markers of premature ovarian senescence in dairy cows. Reprod Fertil Dev. 2014;26(2):235–44. https://doi.org/10.1071/RD12295.

    Article  CAS  PubMed  Google Scholar 

  11. Gandolfi F, Luciano AM, Modina S, Ponzini A, Pocar P, Armstrong DT, Lauria A. The in vitro developmental competence of bovine oocytes can be related to the morphology of the ovary. Theriogenology. 1997;48:1153–60. https://doi.org/10.1016/s0093-691x(97)00348-8.

    Article  CAS  PubMed  Google Scholar 

  12. Tessaro I, Luciano AM, Franciosi F, Lodde V, Corbani D, Modina SC. The endothelial nitric oxide synthase/nitric oxide system is involved in the defective quality of bovine oocytes from low mid-antral follicle count ovaries. J Anim Sci. 2011;89(8):2389–96. https://doi.org/10.2527/JAS.2010-3714.

    Article  CAS  PubMed  Google Scholar 

  13. Schall PZ, Latham KE. Cross-species meta-analysis of transcriptome changes during the morula-to-blastocyst transition: metabolic and physiological changes take center stage. Am J Physiol Cell Physiol. 2021;321(6):C913-31. https://doi.org/10.1152/AJPCELL.00318.2021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yao Y, Liu S, **a C, et al. Comparative transcriptome in large-scale human and cattle populations. Genome Biol. 2022;23:176. https://doi.org/10.1186/s13059-022-02745-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Burns DS, Jimenez-Krassel F, Ireland JL, Knight PG, Ireland JJ. Numbers of antral follicles during follicular waves in cattle: evidence for high variation among animals, very high repeatability in individuals, and an inverse association with serum follicle-stimulating hormone concentrations. Biol Reprod. 2005;73:54–62. https://doi.org/10.1095/biolreprod.104.036277.

    Article  CAS  PubMed  Google Scholar 

  16. Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC, Ostrovsky AE, Mahmoud A, Lonie AJ, Syme A, Fouilloux A, Bretaudeau A, Nekrutenko A, Kumar A, Eschenlauer AC, Desanto AD, Guerler A, Serrano-Solano B, Batut B, … Briggs PJ (2022). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucl Acids Res. 50(W1), W345–W351.https://doi.org/10.1093/NAR/GKAC247.

  17. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9(8). https://doi.org/10.1371/JOURNAL.PCBI.1003118.

  18. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12). https://doi.org/10.1186/S13059-014-0550-8.

  19. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-13. https://doi.org/10.1093/NAR/GKY1131.

    Article  CAS  PubMed  Google Scholar 

  20. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199-205. https://doi.org/10.1093/NAR/GKZ401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pietroforte S, Barragan M, Ferrer-Vaquer A, Irimia M, Ibáñez E, Popovic M, Vassena R, Zambelli F. Specific processing of meiosis-related transcript is linked to final maturation in human oocytes. Mol Hum Reprod. 2023. https://doi.org/10.1093/MOLEHR/GAAD021.

  22. Fair T, Carter F, Park S, Evans ACO, Lonergan P. Global gene expression analysis during bovine oocyte in vitro maturation. Theriogenology. 2007 68 Suppl 1(SUPPL. 1). https://doi.org/10.1016/J.THERIOGENOLOGY.2007.04.018.

  23. Mamo S, Carter F, Lonergan P, Leal CL, Naib A, Mcgettigan A, Mehta P, Evans JPC, A., Fair T. (2011). Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation. https://doi.org/10.1186/1471-2164-12-151.

  24. Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Molecular Reproduction and Development. 2015;82(2):103–14. https://doi.org/10.1002/MRD.22445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Reyes JM, Silva E, Chitwood JL, Schoolcraft WB, Krisher RL, Ross PJ. Differing molecular response of young and advanced maternal age human oocytes to IVM. Hum Reprod. 2017;32(11):2199–208. https://doi.org/10.1093/humrep/dex284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hendrickson PG, Doráis JA, Grow EJ, Whiddon JL, Lim JW, Wike CL, Weaver BD, Pflueger C, Emery BR, Wilcox AL, Nix DA, Peterson CM, Tapscott SJ, Carrell DT, Cairns BR. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet. 2017;49(6):925–34. https://doi.org/10.1038/ng.3844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cornet-Bartolomé D, Barragán M, Zambelli F, Ferrer-Vaquer A, Tiscornia G, Balcells S, Rodriguez A, Grinberg D, Vassena R. Human oocyte meiotic maturation is associated with a specific profile of alternatively spliced transcript isoforms. Mol Reprod Dev. 2021;88(9):605–17. https://doi.org/10.1002/mrd.23526.

    Article  CAS  PubMed  Google Scholar 

  28. Meghan L, Ruebel PZ, Schall U, Midic KA, Vincent B, Goheen CA, VandeVoort, Keith E, Latham. Transcriptome analysis of rhesus monkey failed-to-mature oocytes: deficiencies in transcriptional regulation and cytoplasmic maturation of the oocyte mRNA population. Mol Hum Reprod. 2018;24:478–94. https://doi.org/10.1093/molehr/gay032.

    Article  CAS  Google Scholar 

  29. Zhang B, Zheng H, Huang B, Li W, **ang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2017;537(7621):553–7.

    Article  Google Scholar 

  30. Adona PR, Leal CL, Biase FH, De Bem TH, Mesquita LG, Meirelles FV, Ferraz AL, Furlan LR, Monzani PS, Guemra S. In vitro maturation alters gene expression in bovine oocytes. Zygote Aug. 2016;24(4):624–33. https://doi.org/10.1017/S0967199415000672.

    Article  CAS  Google Scholar 

  31. Llonch S, Barragán M, Nieto P, Mallol A, Elosua-Bayes M, Lorden P, Ruiz S, Zambelli F, Heyn H, Vassena R, Payer B. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell. 2021;20(5):e13360. https://doi.org/10.1111/acel.13360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nenonene KE, Trottier-Lavoie M, Marchais M, Bastien A, Gilbert I, Macaulay AD, Khandjian EW, Luciano AM, Lodde V, Viger RS, Robert C. Roles of the cumulus-oocyte transzonal network and the Fragile X protein family in oocyte competence. Reproduction. 2023;165(2):209–19. https://doi.org/10.1530/rep-22-0165.

    Article  CAS  Google Scholar 

Download references

Funding

This project received intramural funding from the Eugin Group and funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 860960.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mina Popovic or Filippo Zambelli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietroforte, S., Dey, P., Ibáñez, E. et al. Meiotic maturation failure in primary ovarian insufficiency: insights from a bovine model. J Assist Reprod Genet (2024). https://doi.org/10.1007/s10815-024-03160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10815-024-03160-3

Keywords

Navigation