Log in

Thermally Induced Birefringence and Mode Selection in the Cavity of a Passively Q-Switched Diode-Pumped Nd:YAG Laser

  • Published:
Journal of Applied Spectroscopy Aims and scope

Operating regimes of an optical system consisting of a compact pulsed master diode-pumped Q-switched Nd:YAG laser and triple-crystal (KTP) ring cell of an optical parametric oscillator have been investigated. It was experimentally shown that the frequency-selective properties of a passive Q-switched unit in natural mode selection are enhanced by creating a Lyot polarization interference filter with the phase plate in the form of a laser active element with thermally induced birefringence and a polarizer. Such Lyot filter appears in the Nd:YAG laser cavity during operation at relatively high energy and repetition rate of radiation pulses (60–100 mJ, 20 Hz). The combined action of the natural mode selection process and the Lyot filter ensures stable operation of a passive Q-switched Ng:YAG laser in single-frequency lasing mode (the lasing bandwidth is <57 MHz). The master single-frequency pulsed Nd:YAG laser (λ = 1.06 μm) allows the energy of pulses applied to the input of the optical parametric oscillator to be reduced by greater than 1.5 times while maintaining the specified energy level of the output pulses (30 mJ, λ = 1.57 μm). An additional increase in the efficiency of the optical parametric oscillator conversion is achieved by introducing a two-lens 1.3× telescope into the master laser cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Skvortsov, M. V. Okhapkin, A. Yu. Nevskii, and S. N. Bagaev, Kvantovaya Élektron. (Moscow), 34, 1101–1106 (2004).

    Article  Google Scholar 

  2. D. R. Cremons, J. B. Abshire, X. Sun, G. Allan, H. Riris, M. D. Smith, S. Guzewich, A. Yu, and F. Hovis, CEAS Space J., 12, 149–162 (2020).

    Article  ADS  Google Scholar 

  3. O. Reitebuch, Ch. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, J. Atmos. Ocean Technol., 26, 2501–2515 (2009).

    Article  ADS  Google Scholar 

  4. M. V. Bogdanovich, V. V. Kabanov, G. I. Ryabtsev, A. G. Ryabtsev, and Y. V. Lebiadok, Proc. SPIE Int. Soc. Opt. Eng., 8677, Article ID 86770 (1–6) (2013).

  5. M. V. Bogdanovich, A. V. Grigor’ev, K. I. Lantsov, K. V. Lepchenkov, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, V. S. Titovets, L. Agraval, and A. Bkhardvash, Kvantovaya Élektron. (Moscow), 47, 308–312 (2017).

    Article  Google Scholar 

  6. R. Fisher and L. A. Kulevskii, Kvantovaya Élektron. (Moscow), 4, 245–289 (1977).

    ADS  Google Scholar 

  7. W. R. Sooy, Appl. Phys. Lett., 7, 36–37 (1965).

    Article  ADS  Google Scholar 

  8. M. V. Bogdanovich, A. V. Grigor′ev, V. S. Kalinov, O. E. Kostik, K. I. Lantsov, K. V. Lepchenkov, A. G. Ryabtsev, G. I. Ryabtsev, P. V. Shpak, L. L. Teplyashin, M. A. Shchemelev, and P. I. Sadovskii, J. Appl. Spectrosc., 86, 50–55 (2019).

    Article  ADS  Google Scholar 

  9. E. O. Batura, M. V. Bogdanovich, A. V. Grigor′ev, V. N. Dudikov, K. I. Lantsov, A. G. Ryabtsev, G. I. Ryabtsev, P. V. Shpak, L. L. Teplyashin, and M. A. Shchemelev, J. Appl. Spectrosc., 88, 48–54 (2021).

    Article  ADS  Google Scholar 

  10. W. Demtroder, Laser Spectroscopy. Basic Concepts and Instrumentation, Sec. Corrected Printing, Springer-Verlag, Berlin, Heidelberg, New York (1982).

  11. P. Feru and L. McCrumb, Fotonika, No. 3, 34–40 (2007).

  12. T. V. Bezyazychnaya, M. V. Bogdanovich, A. V. Grigor’ev, V. V. Kabanov, O. E. Kostik, Y. V. Lebiadok, K. V. Lepchenkov, V. V. Mashko, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, and L. L. Teplyashin, Opt. Commun., 308, 26–29 (2013).

    Article  ADS  Google Scholar 

  13. M. V. Bogdanovich, V. N. Dudikov, K. I. Lantsov, A. G. Ryabtsev, G. I. Ryabtsev, L. L. Teplyashin, V. S. Tsitavets, P. V. Shpak, and M. A. Shchemelev, Opt. Commun., 3464, Article ID 125533 (2020).

  14. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermo-Optic Solid-State Lasers [in Russian], Mashinostroenie, Leningrad (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Ryabtsev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 5, pp. 621–625, September–October, 2022. https://doi.org/10.47612/0514-7506-2022-89-5-621-625.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanovich, M.V., Grigor’ev, A.V., Dudikov, V.N. et al. Thermally Induced Birefringence and Mode Selection in the Cavity of a Passively Q-Switched Diode-Pumped Nd:YAG Laser. J Appl Spectrosc 89, 835–838 (2022). https://doi.org/10.1007/s10812-022-01433-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01433-2

Keywords

Navigation